K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2017

a) Giá trị biểu thức A xác định \(\Leftrightarrow\hept{\begin{cases}x+3\ne0\\x-3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne3\end{cases}}\)

b)\(A=\frac{4}{x+3}+\frac{2}{x-3}+\frac{9-5x}{\left(x-3\right)\left(x+3\right)}=\frac{4\left(x-3\right)+2\left(x+3\right)+9-5x}{\left(x-3\right)\left(x+3\right)}\)

\(\frac{4x-12+2x+6+9-5x}{\left(x-3\right)\left(x+3\right)}=\frac{x+3}{\left(x-3\right)\left(x+3\right)}=\frac{1}{x-3}\)

c) Ta có: x=1 thoã mãn ĐKXĐ

Thay x = 1 vào biểu thức A ta được:

A= \(\frac{1}{1-3}=\frac{-1}{2}\)

Vậy giá trị biểu thức A là \(\frac{-1}{2}\)tại x = 1

5 tháng 10 2019

a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)

b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)

\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)

25 tháng 2 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)

\(\Leftrightarrow A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2\left(x+2\right)}{x-3}\)

\(\Leftrightarrow A=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{\left(x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{x+4}{x-3}\)

b) Để \(A\inℤ\)

\(\Leftrightarrow\frac{x+4}{x-3}\inℤ\)

\(\Leftrightarrow1+\frac{7}{x-3}\inℤ\)

\(\Leftrightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)

c) Để \(A=\frac{3}{5}\)

\(\Leftrightarrow\frac{x+4}{x-3}=\frac{3}{5}\)

\(\Leftrightarrow5x+20=3x-9\)

\(\Leftrightarrow2x+29=0\)

\(\Leftrightarrow x=-\frac{29}{2}\)

d) Để \(A< 0\)

\(\Leftrightarrow\frac{x+4}{x-3}< 0\)

\(\Leftrightarrow1+\frac{7}{x-3}< 0\)

\(\Leftrightarrow\frac{-7}{x-3}< 1\)

\(\Leftrightarrow-7< x-3\)

\(\Leftrightarrow x>-4\)

e) Để \(A>0\)

\(\Leftrightarrow\frac{x+4}{x-3}>0\)

\(\Leftrightarrow1+\frac{7}{x-3}>0\)

\(\Leftrightarrow\frac{-7}{x-3}>1\)

\(\Leftrightarrow-7>x-3\)

\(\Leftrightarrow x< -4\)

21 tháng 2 2020

ai giúp mình vớiiiii

21 tháng 2 2020

a, ĐKXĐ:

9x^2 - 16 ≠ 0

=> (3x - 4)(3x + 4) ≠ 0

=> 3x - 4 ≠ 0 và 3x + 4 ≠ 0

=> 3x  ≠ 4 và 3x ≠ -4

=> x ≠ 4/3 hoặc x ≠ -4/3

b, ĐKXĐ:

x^2 - 5x + 6 ≠ 0

=> x^2 - 2x - 3x + 6 ≠ 0

=> x(x - 2) - 3(x - 2) ≠ 0

=> (x - 3)(x - 2) ≠ 0

=> x - 3 ≠ 0 và x - 2 ≠ 0

=> x ≠ 3 và x ≠ 2

c, ĐKXĐ : 

x^2 - 4x + 4 ≠ 0

=> (x - 2)^2 ≠ 0

=> x - 2 ≠ 0

=> x ≠ 2

A=x3/x2--4.x+2/x-x-4xx-4/xx-2

Điều kiện x \(\ne\)+-2

Ý b c tự làm 

9 tháng 12 2017

\(A=\frac{x^3}{x^2-4}.\frac{x+2}{x}-\frac{4x-4}{x-2}\)   \(ĐKXĐ:x\ne0;x\ne2\)

\(A=\frac{x^2}{x-2}-\frac{4\left(x-1\right)}{x-2}\)

\(A=\frac{x^2-4x+4}{x-2}\)

\(A=\frac{\left(x-2\right)^2}{x-2}\)

\(A=x-2\)

vậy \(A=x-2\)

14 tháng 12 2018

a) P xác định \(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+5\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}}\)

Vậy P xác định \(\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x\left(x+2\right)}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^2\left(x+2\right)}{2x\left(x+5\right)}+\frac{\left(x-5\right)\left(x+5\right)2}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)

Có: \(P=0\)

\(\Rightarrow P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=0\Leftrightarrow x\left(x^2+4x-5\right)=0\Leftrightarrow x^2+4x-5=0\)

\(\Leftrightarrow\left(x^2-x\right)+\left(5x-5\right)=0\)

\(\Leftrightarrow x\left(x-1\right)+5\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

Vậy \(P=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

11 tháng 12 2022

a: ĐKXĐ: x<>2; x<>-2; x<>0

b: \(A=\dfrac{2x+4-4}{\left(x+2\right)^2}:\dfrac{2-x-2}{\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{2x}{\left(x+2\right)^2}\cdot\dfrac{\left(x+2\right)\left(x-2\right)}{-x}=\dfrac{-2\left(x-2\right)}{x+2}\)

c: Khi x=2 thì A ko xác định

Khi x=3/4 thì \(A=\dfrac{-2\left(\dfrac{3}{4}-2\right)}{\dfrac{3}{4}+2}=\dfrac{10}{11}\)

d: Để A=0 thì x-2=0

=>x=2(loại)

Để A=-2/3 thì \(\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-2}{3}\)

=>x-2/x+2=1/3

=>3x-6=x+2

=>2x=8

=>x=4