Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
a: Để A giao B khác rỗng thì 2m+2<=4 hoặc m-1>=-2
=>m<=1 hoặc m>=-1
b: Để A là tập con của B thì m-1>-2 và 4<=2m+2
=>m>-1 và 2m+2>=4
=>m>-1 và m>=1
=>m>=1
c: Để B là tập con của B thì m-1<-2 và 2m+2<=4
=>m<-1 và m<=1
=>m<-1
Bài 2:
|x-m|<=1
=>-1<=x-m<=1
=>m-1<=x<=m+1
Để X là tập con của (-5;1] thì m-1>-5 và m+1<=1
=>-4<m<=0
\(\left(2\right)\Leftrightarrow\left[{}\begin{matrix}x>-1\\x< -3\end{matrix}\right.\)
Xét (1), đặt \(f\left(x\right)=x^2-m\left(m^2+1\right)+m^4\), ta có:
\(\Delta=m^2\left(m^2+1\right)^2-4m^4=m^2\left(m^2-1\right)^2\ge0\) ; \(\forall m\)
Nếu \(\left[{}\begin{matrix}m=0\\m=1\\m=-1\end{matrix}\right.\) \(\Rightarrow\left(1\right)\) vô nghiệm (ktm)
Nếu \(m\ne\left\{0;\pm1\right\}\) \(\Rightarrow\) nghiệm của (1) đều là nghiệm của (2) khi và chỉ khi: \(\left[{}\begin{matrix}x_1< x_2\le-3\\x_2>x_1\ge-1\end{matrix}\right.\)
TH1: \(x_1< x_2\le-3\Leftrightarrow\left\{{}\begin{matrix}f\left(-3\right)\ge0\\\frac{x_1+x_2}{2}< -3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^4+3m^3+3m+9\ge0\\m^3+m< -6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^3+3\right)\left(m+3\right)\ge0\\\left(m^3+3\right)+\left(m+3\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^3+3\le0\\m+3\le0\end{matrix}\right.\) \(\Rightarrow m\le-3\)
TH2:
\(x_2>x_1\ge-1\Leftrightarrow\left\{{}\begin{matrix}f\left(-1\right)\ge0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^4+m^3+m+1\ge0\\m^3+m>-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m^3+1\right)\left(m+1\right)\ge0\\\left(m^3+1\right)+\left(m+1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^3+1\ge0\\m+1\ge0\end{matrix}\right.\) \(\Rightarrow m\ge-1\)
Kết hợp điều kiện delta, ta được đáp án B đúng
Để BPT vô nghiệm
\(\Leftrightarrow\Delta=m^2-4\left(m+3\right)\le0\)
\(\Leftrightarrow m^2-4m-12\le0\)
\(\Rightarrow-6\le m\le2\)
Đáp án C
\(\Leftrightarrow-x^2+2x+3+4\sqrt{-x^2+2x+3}\le m\)
Đặt \(\sqrt{-x^2+2x+3}=\sqrt{4-\left(x-1\right)^2}=t\Rightarrow0\le t\le2\)
BPT trở thành:
\(f\left(t\right)=t^2+4t\le m\)
Để BPT nghiệm đúng với mọi \(t\in\left[0;2\right]\)
\(\Leftrightarrow m\ge\max\limits_{\left[0;2\right]}f\left(t\right)=12\)
\(\Rightarrow m\ge12\)
\(\left(m+1\right)x\ge m-2\)
Để BPT vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m+1=0\\m-2>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-1\\m>2\end{matrix}\right.\)
\(\Rightarrow\) Ko tồn tại m thỏa mãn
Đáp án B đúng