\(^4\)y\(^3\)+*
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

a) \(\left(3x-5\right)\left(2x+3\right)-\left(2x-3\right)\left(3x+7\right)-2x\left(x-4\right)\)

\(=\left(6x^2-x-15\right)-\left(6x^2+5x-21\right)-\left(2x^2-8x\right)\)

\(=6x^2-x-15-6x^2-5x+21-2x^2+8x\)

\(=-2x^2+2x+6\)

\(=-2\left(x^2-x-3\right)\)

b) \(\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)

\(=\left(x^2+2\right)^2-\left(x^2-4\right)\left(x^2+4\right)\)

\(=\left(x^2+2\right)^2-\left(x^4-16\right)\)

\(=\left(x^4+4x^2+4\right)-\left(x^4-16\right)\)

\(=x^4+4x^2+4-x^4+16\)

\(=4x^2+20\)

\(=4\left(x^2+5\right)\)

c) \(\left(2x-y\right)^2-2\left(x+3y\right)^2-\left(1+3x\right)\left(3x-1\right)\)

\(=\left(4x^2-4xy+y^2\right)-2\left(x^2+6xy+9y^2\right)-\left(9x^2-1\right)\)

\(=4x^2-4xy+y^2-2x^2-16xy-18y^2-9x^2+1\)

\(=-7x^2-20xy-17y^2+1\)

d) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)

\(=\left(x^6-3x^4+3x^2-1\right)-\left(x^6-1\right)\)

\(=x^6-3x^4+3x^2-1-x^6+1\)

\(=-3x^4+3x^2\)

\(=-3x^2\left(x^2-1\right)\)

\(=-3x^2\left(x-1\right)\left(x+1\right)\)

e) \(\left(2x-1\right)^2-2\left(4x^2-1\right)+\left(2x+1\right)^2\)

\(=\left(2x-1\right)^2-2\left(2x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)

\(=\left[\left(2x-1\right)-\left(2x+1\right)\right]^2\)

\(=\left(2x-1-2x-1\right)^2\)

\(=\left(-2\right)^2=4\)

g) \(\left(x-y+z\right)^2+\left(y-z\right)^2-2\left(x-y+z\right)\left(z-y\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z+y+z\right)^2\)

\(=\left(x+2z\right)^2\)

h) \(\left(2x+3\right)^2+\left(2x+5\right)^2-\left(4x+6\right)\left(2x+5\right)\)

\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\)

\(=\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\)

\(=\left(2x+3-2x-5\right)^2\)

\(=\left(-2\right)^2=4\)

i) \(5x^2-\dfrac{10x^3+15x^2-5x}{-5x}-3\left(x+1\right)\)

\(=5x^2-\dfrac{-5x\left(-2x^2-3x+1\right)}{-5x}-3\left(x+1\right)\)

\(=5x^2-\left(-2x^2-3x+1\right)-3\left(x+1\right)\)

\(=5x^2+2x^2+3x-1-3x-3\)

\(=7x^2-4\)

24 tháng 8 2019

a)VT=(a+b)^3+(a-b)^3=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^3-b^3

=6ab^2+2a^3

=2a(3b^2+a^2)

=VP(đpcm)

b)VT=(a+b)^3-(a-b)^3=a^3+3a^2b+ab^2+b^3-a^3+3a^2b-3ab^3+b^3

=2b^3+6a^2b

=2b(b^2+3a^2)

=VP(đpcm)

c)phải là(x+y)^2-y^2+x(x+2y)

Bài 1: Phân tích đa thức thành nhân tử

a) Ta có: \(16x^2-y^2+6y-9\)

\(=16x^2-\left(y^2-6y+9\right)\)

\(=\left(4x\right)^2-\left(y-3\right)^2\)

\(=\left[4x-\left(y-3\right)\right]\left[4x+\left(y-3\right)\right]\)

\(=\left(4x-y+3\right)\left(4x+y-3\right)\)

b) Ta có: \(a^2-16a^2b^2+b^2+2ab\)

\(=\left(a^2+2ab+b^2\right)-\left(4ab\right)^2\)

\(=\left(a+b\right)^2-\left(4ab\right)^2\)

\(=\left(a+b-4ab\right)\left(a+b+4ab\right)\)

c) Ta có: \(x^3-6x^2-9x\)

\(=x\left(x^2-6x-9\right)\)

d) Ta có: \(mx^2+my^2-nx^2-ny^2\)

\(=m\left(x^2+y^2\right)-n\left(x^2+y^2\right)\)

\(=\left(x^2+y^2\right)\left(m-n\right)\)

e) Ta có: \(a^3+b^3+a^2c+b^2c-abc\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)\)

f) Ta có: \(4x^2-y^2-4x+1\)

\(=\left(4x^2-4x+1\right)-y^2\)

\(=\left(2x-1\right)^2-y^2\)

\(=\left(2x-1-y\right)\left(2x-1+y\right)\)

g) Ta có: \(\left(2x+3\right)^2+5\cdot\left(2x+3\right)\)

\(=\left(2x+3\right)\left(2x+3+5\right)\)

\(=\left(2x+3\right)\left(2x+8\right)\)

\(=2\left(2x+3\right)\left(x+4\right)\)

h) Ta có: \(3x^2-10x-8\)

\(=3x^2-12x+2x-8\)

\(=3x\left(x-4\right)+2\left(x-4\right)\)

\(=\left(x-4\right)\left(3x+2\right)\)

18 tháng 7 2020

cảm ơn nhiều ạ :)))

9 tháng 7 2016

chữ bị lỗi .... ~0~

9 tháng 7 2016

1/

a/  \(x^2+y^2=x^2+y^2+2xy-2xy\)\(=\left(x+y\right)^2-2xy\)

thay vào: \(\left(x+y\right)^2-2xy=a^2-2b\)

b/ \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)\left(x^2+y^2+2xy-xy-2xy\right)\)\(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)

thay vào:  \(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=a\left(a^2-3b\right)\)

c/ \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2\)

thay vào: \(\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)

a: \(=\dfrac{5}{2}x-2x+\dfrac{7}{2}=\dfrac{1}{2}x+\dfrac{7}{2}\)

b: \(=\dfrac{-1}{4}x^4-3x^2+\dfrac{9}{4}x\)

c: \(=\dfrac{1}{5}x+\dfrac{1}{15}xy+\dfrac{7}{10}x^2\)

d: \(=-9x^3-1-12y+27xy\)

1 tháng 10 2018

A=\(x^3-2x^2+x\)

=x.(x2-2x+1)

=x(x-1)2

B=\(2x^2+4x+2-2y^2\)

=\(2\left(x^2+2x+1-y^2\right)\)

=\(2.\left[\left(x+1\right)^1-y^2\right]\)

=\(2\left(x+1-y\right)\left(x+1+y\right)\)

C=\(2xy-x^2-y^2+16\)

=\(-\left(-2xy+x^2+y^2-16\right)\)

=\(-\left[\left(x-y\right)^2-4^2\right]\)

=-(x-y-4)(x-y+4)

D=\(x^3+2x^2y+xy^2-9x\)

=\(x\left(x^2+2xy-y^2-9\right)\)

=\(x.\left[\left(x-y\right)^2-3^2\right]\)

=x.(x-y-3)(x-y+3)

E=\(2x-2y-x^2+2xy-y^2\)

\(=\left(2x-2y\right)-\left(x^2-2xy+y^2\right)\)

=\(2\left(x-y\right)-\left(x-y\right)\left(x-y\right)\)

=(x-y)(2x-2y-x+y)

=(x-y)(x+y)

1 tháng 10 2018

ở câu B:

(x+1)^1 sửa giùm mk thành (x+1)^2

28 tháng 9 2018

a, 3x - 3y = 3( x- y )

b, x2 - x =x(x - 1)

c, 3(x - y) - 5x(y - x)

= 3(x - y) + 5x(x - y)

= ( x - y)(3 + 5x)

d, x(y - 1) - y(y - 1)

= (x - y)(y - 1)

e, 10x(x - y)-8y( y - x)

= 10x(x - y) + 8y(x - y)

= (10y + 8x)(x - y)

f, 2x2 +5x3 +xy

= x(2x + 5x2 + y)

g, 14x2y - 21xy2 +28x2y2

= 7xy(2x - 3y + 4xy)

h, x2 - 3x + 2

= x2 - x - 2x + 2

= x(x - 1)- 2(x - 1)

= (x - 2)(x - 1)

i, x2 - x - 6

x2 + 2x - 3x - 6

x(x + 2) - 3(x + 2)

(x + 2)(x - 3)

k, x2 + 5x+6

= x2 - x + 6x + 6

=x(x - 1) + 6(x + 1)

= x(x - 1) - 6(x - 1)

= (x - 6)(x - 1)

l,x2 - 4x + 3

= x2 - x - 3x + 3

= x(x - 1) - 3(x - 1)

= (x - 3)(x - 1)

m, x2 + 5x +4

= x2 + x + 4x + 4

= x(x + 1) + 4(x + 1)

= (x + 4)(x + 1)

28 tháng 9 2018

Hướng dẫn:

a, b, c, d, e, f, g: Phương pháp phân phối đưa thừa số chung ra ngoài

h, i, k, l, m : Tách hạng tử rồi nhóm

Bạn làm ra, đoạn nào không hiểu có thể inbox riêng để hoàn thành từng câu

29 tháng 10 2017

1,Thực hiện phép tính :

a, (x + 2)9 : (x + 2)6

=(x+2)9-6

=(x+2)3

b, (x - y) 4 : (x - 2)3

=(x-y)4-3

=x-y

c, ( x2+ 2x + 4)5 : (x2 + 2x + 4)

=(x2+2x+4)5-1

=(x2+2x+4)4

d, 2(x2 + 1)3 : 1/3(x2 + 1)

=(2÷1/3).[(x2+1)3÷(x2+1)]

=6(x2+1)2

e, 5 (x - y)5 : 5/6 (x - y)2

=(5÷5/6).[(x-y)5÷(x-y)2]

=6(x-y))3

27 tháng 10 2021

helpppppp

8 tháng 3 2019

a/ \(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{\left(x^4+y^4\right)\left(x^4-y^4\right)}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4x^4y^4-4y^8+8y^8}{\left(x^4+y^4\right)\left(x^4-y^4\right)}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4x^4y^4+4y^8}{\left(x^4+y^4\right)\left(x^4-y^4\right)}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4-y^4}=4\)

.............................................................................

\(\Leftrightarrow\frac{y}{x-y}=4\)

\(\Leftrightarrow5y=4x\)

8 tháng 3 2019

b/ Ta có:

\(a-b=a^3+b^3>0\)

Ta lại có:

\(a^2+b^2< a^2+b^2+ab\)

Ta chứng minh

\(a^2+b^2+ab< 1\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)< a-b=a^3+b^3\)

\(\Leftrightarrow a^3-b^3< a^3+b^3\)

\(\Leftrightarrow b^3>0\) (đúng)

Vậy ta có điều phải chứng minh