Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. (3x +1) (9x3 - 3x +1) = (3x)3 + 13
b.(x+4)(x2-4x+16)=x3+43
c. (5x+2)(25x2-10x+4)=(5x)3+23
d. (2x+3)(4x2-6x+9)=((2x)3+33
e. Đoán xem
b. sửa đề
\(6x^4+25x^3+12x-25x^2+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-3\\x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy........
Bài 1 : Giải phương trình
a) (x + 3)4 + (x + 5)4 = 16
Đặt : x + 3 = t
=> x + 5 = x + 3 + 2 = t + 2
Thay x + 3 = t và x + 5 = t + 2 vào phương trình, ta có :
t4 + (t + 2)4 = 16
<=> 2t4 + 8t3 + 24t2 + 32t + 16 = 16
<=> 2(t4 + 4t3 + 12t2 + 16t) = 0
<=> t4 + 4t3 + 12t2 + 16t = 0
<=> (t + 2) . t . (t2 + 2y + 4) = 0
TH1 : t = 0
TH2 : t + 2 = 0 <=> t = -2
TH3 : t2 + 2y + 4 = 0 (vô nghiệm => loại)
Nên t = 0 hoặc t = -2
hay x + 3 = -2 hoặc x + 3 = 0
<=> x = -5 hoặc x = -3
\(S=\left\{-5;-3\right\}\)
b) 6x4 + 25x3 + 12x2 - 25x + 6 = 0
<=> 6x4 + 12x3 + 13x3 + 26x2 - 14x2 - 28x + 3x + 6 = 0
<=> 6x3 (x + 2) + 13x2 (x + 2) - 14x (x + 2) + 3(x + 2) = 0
<=> (x + 2)(6x3 + 13x2 - 14x + 3) = 0
<=> (x + 2)(6x3 + 18x2 - 5x2 - 15x + x + 3) = 0
\(\Leftrightarrow\left(x+2\right)[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)]=0\)
<=> (x + 2)(x + 3) (6x2 - 5x + 1) = 0
<=> (x + 2)(x + 3)(2x - 1)(3x - 1) = 0
TH1 : x + 2 = 0 <=> x = -2
TH2 : x + 3 = 0 <=> x = -3
TH3 : 2x - 1 = 0 <=> 2x = 1 <=> x = \(\dfrac{1}{2}\)
TH4 : 3x - 1 = 0 <=> 3x = 1 <=> 3x = \(\dfrac{1}{3}\)
\(S=\left\{-2;-3;\dfrac{1}{2};\dfrac{1}{3}\right\}\)
1) \(x^6-x^4-9x^3+9x^2\)
\(=x^2\left(x^4-x^2-9x+9\right)\)
\(=x^2\left[x^2\left(x^2-1\right)-9\left(x-1\right)\right]\)
\(=x^2\left(x-1\right)\left[x^2\left(x+1\right)-9\right]\)
\(=x^2\left(x-1\right)\left(x^3+x^2-9\right)\)
2) \(x^4-4x^3+8x^2-16x+16\)
\(=x^2\left(x^2+4\right)-4x\left(x^2+4\right)+4\left(x^2+4\right)\)
\(=\left(x^2+4\right)\left(x-2\right)^2\)
3) \(x^4-25x^2+20x-4=x^4+5x^3-2x^2-5x^3-25x^2+10x+2x^2+10x-4\)
\(=x^2\left(x^2+5x-2\right)-5x\left(x^2+5x-2\right)+2\left(x^2+5x-2\right)\)
\(=\left(x^2+5x-2\right)\left(x^2-5x+2\right)\)
4) \(5x\left(x-2y\right)+2\left(2y-x\right)^2\)\(=5x\left(x-2y\right)+2\left(x-2y\right)^2=\left(x-2y\right)\left(5x+2x-4y\right)=\left(x-2y\right)\left(7x-4y\right)\)
5) \(x^2\left(x^2-6\right)-x^2+9=x^4-7x^2+9\)
\(=x^4+x^3-3x^2-x^3-x^2+3x-3x^2-3x+9\)
\(=x^2\left(x^2+x-3\right)-x\left(x^2+x-3\right)-3\left(x^2+x-3\right)\)
\(=\left(x^2+x-3\right)\left(x^2-x-3\right)\)
6) \(7x\left(y-4\right)^2-\left(4-y\right)^3=7x\left(y-4\right)^2+\left(y-4\right)^3=\left(y-4\right)^2\left(7x+y-4\right)\)
7) \(x^3+2x^2-6x-27=x^3-3x^2+5x^2-15x+9x-27\)
\(=x^2\left(x-3\right)+5x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2+5x+9\right)\)
1.
\(x^2-22x+12\) : biểu thức không phân tích được thành nhân tử nữa.
2.
\(9x^2+6x+1=(3x)^2+2.3x.1+1^2=(3x+1)^2\)
3.
\(x^2-10x+2\): không p. tích được thành nhân tử.
4.
\(x^3+1=x^3+1^3=(x+1)(x^2-x+1)\)
5.
\(8x^3-27y^3=(2x)^3-(3y)^3=(2x-3y)[(2x)^2+(2x)(3y)+(3y)^2]\)
\(=(2x-3y)(4x^2+6xy+9y^2)\)
6.
\((x+3y)^2-(3y+1)^2=[(x+3y)-(3y+1)][(x+3y)+(3y+1)]\)
\(=(x-1)(x+6y+1)\)
7.
\(4y^2-36x^2=(2y)^2-(6x)^2=(2y-6x)(2y+6x)=4(y-3x)(y+3x)\)
8.
\(27-(x+4)^3=3^3-(x+4)^3=[3-(x+4)][3^2+3(x+4)+(x+4)^2]\)
\(=-(x+1)(37+x^2+11x)\)
9.
\(25x^2-10xy+y^2=(5x)^2-2.5x.y+y^2=(5x-y)^2\)
10.
\(9x^6-12x^7+4x^8=x^6(9-12x+4x^2)=x^6[3^2-2.3.2x+(2x)^2]\)
\(=x^6(3-2x)^2\)
1: \(=\dfrac{x^2\cdot4xy^2}{x^2}=4xy^2\)
2: \(=\dfrac{3x\left(x-2\right)}{-\left(x-2\right)}=-3x\)
3: \(=\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{x^2+2x+4}=x-2\)
6: \(\dfrac{5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2}{\left(x-y\right)^2}=5\left(x-y\right)^2-3\left(x-y\right)+4\)