K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 10 2020

1.

$27x^2-1=(\sqrt{27}x)^2-1^2=(\sqrt{27}x-1)(\sqrt{27}x+1)$

2.

a)

$x^3-9x^2+27x-27=-8$

$\Leftrightarrow x^3-3.3x^2+3.3^2.x-3^3=-8$

$\Leftrightarrow (x-3)^3=-8=(-2)^3$

$\Rightarrow x-3=-2$

$\Leftrightarrow x=1$

b)

$64x^3+48x^2+12x+1=27$

$\Leftrightarrow (4x)^3+3.(4x)^2.1+3.4x.1^2+1^3=27$

$\Leftrightarrow (4x+1)^3=3^3$

$\Rightarrow 4x+1=3$

$\Leftrightarrow x=\frac{1}{2}$

28 tháng 4 2020

Hoàng Thái Sơn chỗ ĐKXĐ ở câu a x2 + x + 1 > 0 nên luôn khác 0 nên luôn thỏa mãn ĐKXĐ nhé!!

28 tháng 7 2019

a) x3 - 9x2 + 27x - 27 = -8

<=> x3 - 3x2.3 + 3x.32 - 33 = -8

<=> (x - 3)3 = -23

<=> x - 3 = -2

<=> x = 1 (T/m)

Vậy x = 1.

28 tháng 7 2019

b) 64x3 + 48x2 + 12x + 1 = 27

<=> (4x)3 + 3.(4x)2.1 + 3.4x.12 + 13 = 27

<=> (4x + 1)3 = 33

<=> 4x + 1 = 3

<=> 4x = 2

<=> x = \(\frac{1}{2}\)(T/m)

Vậy x = \(\frac{1}{2}\).

10 tháng 12 2016

\(\left[\frac{x.\left(x+3\right)}{\left(x+3\right).\left(x^2+9\right)}+\frac{3}{x+9}\right]:\left[\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\) ]

 \(=\frac{x+3}{x^2-9}.\frac{\left(x-3\right).\left(x^2+9\right)}{x^2+9-6x}\)

\(\frac{\left(x-3\right).\left(x+3\right)}{\left(x-3\right)^2}\)

\(\frac{x+3}{x-3}\)

k mik nhé. Plssss~

16 tháng 7 2017

a, (x3.x2.x).(1/8-3/2+3/2-1)                      b, (x3.x2y.xy2.y3).(1/8-1/4+1/12-1/27)

  =x6.(-7/8)                                                 = x6.y6.9.(-17/216)

3 tháng 6 2021

a, \(P=\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right):\frac{x}{x-1}\)ĐK : \(x\ne0;1\)

\(=\left(\frac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right).\frac{x-1}{x}=\frac{x+1}{x^2}\)

b, Ta có : \(\left|2x-1\right|=3\Leftrightarrow\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)( tmđk )

TH1 : Thay x = 2 vào biểu thức P ta được : \(\frac{2+1}{4}=\frac{3}{4}\)

TH2 : Thay x = -1 vào biểu thức P ta được : \(\frac{-1+1}{1}=0\)

3 tháng 6 2021

Trả lời:

a, \(P=\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right):\frac{x}{x-1}\)\(\left(đkxđ:x\ne0;x\ne1\right)\)

\(=\left[\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x\left(x-1\right)}\right]:\frac{x}{x-1}\)

\(=\left[\frac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}+\frac{x}{x\left(x-1\right)}+\frac{2-x^2}{x\left(x-1\right)}\right]\cdot\frac{x-1}{x}\)

\(=\frac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\cdot\frac{x-1}{x}\)

\(=\frac{x^2-1+x+2-x^2}{x\left(x-1\right)}\cdot\frac{x-1}{x}\)

\(=\frac{x+1}{x\left(x-1\right)}\cdot\frac{x-1}{x}\)

\(=\frac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)x}\)

\(=\frac{x+1}{x^2}\)

b,  \(\left|2x-1\right|=3\)

Ta có: \(\left|2x-1\right|=\hept{\begin{cases}2x-1\left(đk:x>\frac{1}{2}\right)\\1-2x\left(đk:x< -\frac{1}{2}\right)\end{cases}}\)

Giải 2 pt:

+) 2x - 1 = 3 với x > 1/2

<=> 2x =  4

<=> x = 2 ( tm )

+) 1 - 2x = 3 với x < -1/2

<=> - 2x = 2

<=> x = - 1 ( tm )

Vậy x = 2; x = - 1

Thay x = 2 vào P, ta có:

\(P=\frac{2+1}{2^2}=\frac{3}{4}\)

Thay x = -1 vào P, ta có:

\(P=\frac{-1+1}{\left(-1\right)^2}=0\)

26 tháng 6 2016

  \(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}\right)\)\(\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)

=\(\left[\frac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}\right]\):\(\left[\frac{1}{x-3}-\frac{6x}{x^2\left(x-3\right)+9\left(x-3\right)}\right]\)

=\(\left[\frac{x\left(x-3\right)}{\left(x^2+9\right)\left(x-3\right)}\right]\):\(\left[\frac{1}{x-3}-\frac{6x}{\left(x^2+9\right)\left(x-3\right)}\right]\)

=\(\frac{x}{x^2+9}\):\(\left[\frac{x^2+9}{\left(x-3\right)\left(x^2+9\right)}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\)

=\(\frac{x}{x^2+9}\):\(\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)

=\(\frac{x}{x^2+9}\):\(\frac{x-3}{x^2+9}\)

=\(\frac{x}{x^2+9}\).\(\frac{x^2+9}{x-3}\)

=\(\frac{x}{x-3}\)

5 tháng 3 2020

\(ĐKXĐ:x\ne\pm3\)

\(P=\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)

\(\Leftrightarrow P=\left(\frac{x^2-3x}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(\Leftrightarrow P=\frac{\left(x^2-3x\right)+3\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x^2+9\right)}:\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)

\(\Leftrightarrow P=\frac{1}{x+3}:\frac{x-3}{x^2+9}\)

\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x-3\right)}\)