Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\overline{5\circledast8}⋮3khi\left(5+\circledast+8\right)⋮3\Rightarrow\left(13+\circledast\right)⋮3\)
\(\Rightarrow\circledast\) = 2 hoặc \(\circledast\) = 5 hoặc \(\circledast\) = 8.
Vậy chữ số thay cho \(\circledast\) là 2 hoặc 5 hoặc 8.
b)
\(\overline{6\circledast3}⋮9khi\left(6+3+\circledast\right)⋮9\Rightarrow\left(9+\circledast\right)⋮9\)
\(\Rightarrow\circledast\) = 0 hoặc \(\circledast\) = 9.
Vậy chữ số thay \(\circledast\) là 0 hoặc 9
c)
\(\overline{43\circledast}⋮3khi\left(4+3+\circledast\right)⋮3\Rightarrow\circledast=2\text{hoặc}\circledast=5\text{hoặc}\circledast=8\left(1\right)\)
\(\overline{43\circledast}⋮5khi\circledast=0\text{hoặc}\circledast5\)
Vì \(\circledast\) phải thỏa mãn (1) và ( 2) nên \(\circledast\) = 5.
d)
Vì \(\overline{\circledast81\circledast}⋮5\) nên dấu \(\circledast\) ở hàng đơn vị phải bằng 0 hoặc 5
Mà \(\overline{\circledast81\circledast}⋮2\) nên dấu \(\circledast\) ở hàng đơn vị phải bằng 0 ( vì 5 là số lẻ ) . Thay vào ta được số : \(\overline{\circledast810}\)
Để \(\overline{\circledast810}⋮9\) thì \(\left(\circledast+8+1+0\right)⋮9=\left(\circledast+9\right)\Rightarrow\circledast=0\text{hoặc}\circledast=9\)
Mà \(\circledast\) lại là số ở hàng nghìn (là số đầu tiên) nên \(\circledast\) ≠ 0. Do đó \(\circledast\) = 9
Vậy ta được số 9810
Vì \(\overline{1\circledast5\circledast}\) \(⋮2,5\) nên chữ số tận cùng là chữ số 0.
Để \(\overline{1\circledast50}\) \(⋮9\) \(\Leftrightarrow1+\circledast+5+0⋮9\)
\(\Leftrightarrow\circledast+6⋮9\)
\(\Leftrightarrow\circledast=3\)
Thấy: \(1350⋮6;3\) nên thỏa mãn với đề bài.
Vậy \(\overline{1\circledast50}\) \(=1350\)
Vì ¯¯¯¯¯¯¯¯¯¯¯¯¯1∗5∗
chia hết cho 2 và cho 5 nên chữ số hàng đơn vị là 0
Vì ¯¯¯¯¯¯¯¯¯¯¯¯¯1∗5∗
chia hết cho 9
⇒
1+(∗)+5+0=[6+(∗)]
⋮ 9.
Suy ra (*) = 3
Vậy ta có số 1350
Vì 1250 ⋮ 9 nên 1350 ⋮ 3
Vì ƯCLN (2; 3) = 1 nên 1350 ⋮ (2; 3) = 6
Vậy số 1350 chia hết cho tất cả các số 2, 3, 5, 6, 9.
a) Ta có \(5+3+\circledast=8+\circledast\).
Để \(\overline{53\circledast}\) chia hết cho 3 và không chia hết cho 9 thì \(8+\circledast\) cũng chia hết cho 3 và không chia hết cho 9.
Suy ra: \(\circledast\in\left\{4;7\right\}\).
b) Ta có \(\circledast+4+7+1=\circledast+12\).
Để \(\overline{\circledast471}\) chia hết cho 3 mà không chia hết cho 9 thì \(\circledast+12\) phải chia hết cho 3 và không chia hết cho 9.
Dễ thấy \(\circledast\ne0\) nên \(\circledast\in\left\{3;9\right\}\).
Để \(B=\overline{\circledast27\circledast}\) chia hết cho 2 và 5 thì chữ số tận cùng phải bằng 0
Ta có \(B=\overline{\circledast270}\)
Để \(\overline{\circledast270}\) chia hết cho 3 và 9 thì \(\overline{\circledast270}\) phải chia hết cho 9
\(\Rightarrow\circledast+2+7+0\) chia hết cho 9
\(\Rightarrow\circledast+9\) chia hết cho 9
Vì \(0< \circledast\le9\Rightarrow\circledast\in\left\{9\right\}\)
Vậy...
a, Để số trên chia hết cho 2 => \(\otimes\in\left\{0;2;4;6;8\right\}\)
b, Để số trên chia hết cho 5 => \(\otimes\in\left\{0;5\right\}\)
c, Để số trên chia hết cho cả 2 và 5 => \(\otimes=0\)
a, để chia hết cho 2 thì ⊛ thuộc các số chẵn 0, 2, 4, 6, 8,
=> 540, 542, 544, 546, 548,
b, để chia hết cho 5 thì ⊛ gồm số 0 và số 5
=> 540, 545
a, để chia hết cho 2 thì ⊛ thuộc các số chẵn 0, 2, 4, 6, 8,
=> 540, 542, 544, 546, 548,
b, để chia hết cho 5 thì ⊛ gồm số 0 và số 5
=> 540, 545
Bài làm :
Kiến thức : + Các số chia hết cho 2 thì có chữ số tận cùng là số chẵn .
+ Các số chia hết cho 5 thì có chữ số tận cùng là 0 hoặc 5 .
a) Áp dụng kiến thức ở trên . Ta biết chữ số tận cùng của số này là 5 không phải là số chẵn . Nên * \(\in\varnothing\)
b) Áp dụng kiến thức ở trên . Ta biết chữ số tận cùng của số này là 5 chia hết cho 5
\(\Rightarrow\) \(x\in\left\{1;2;3;4;5;6;7;8;9\right\}\).
a) số tận cùng chia hết cho 2 là 0,2,4,6,8
b) số tận cùng chia hết cho 5là 0,5
c) số tận cùng chia hết cho 2 và 5 là 0
c) là 1,4 nha
chúc bạn học tốt hihi like nếu thích và hay nha
a,chia hết cho 2: 0 ; 2; 4; 6; 8
b,chia hết cho 5: 0; 5
c,chia hết cho 3: 1; 4
Bài làm :
a) Để 3*5 chia hết cho 3 . Ta có :
3*5 = 3 + ( * ) + 5 ( * ∈ N và * <10 )
3*5 = ( 3 + 5 ) + ( * )
3*5 = 8 + (*) chia hết cho 3
Vậy để 3*5 (8 + *)chia hết cho 3
Nên * ∈{1;4;7}
b) Để 7*2 chia hết cho 9 . Ta có :
7*2 = 7 + (*) + 2 ( * ∈ N và * < 10 )
7*2 = ( 7 + 2 ) + (*)
7*2 = 9 + (*) chia
Vậy để 7*2 (9 + *) chia hết cho 9
Nên * ∈{0;9}
c) Để *63* chia hết cho cả 2,3,5,9 .
+ Số chia hết cho 2 ; 5 thì chữ số tận cùng của nó phải là số 0
Ta có *630 chia hết cho 2,3,5,9
+ Để *630 chia hết cho 3,9
Ta có :
*630 = (*) + 6 + 3 + 0 ( * ∈ N và * < 10 )
*630 = (*) + ( 6 + 3 + 0 )
*630 = (*) + 9 chia hết cho 3 ; 9
Vậy để *630 (* + 9) chia hết cho 3 ; 9
Do * \(\ne0\) nên * ∈{9}
Để 3*5 chia hết cho 3 thì 3+5+* chia hết cho 3
Ta có 3 + 5 + *=8 + *
* thuộc {1;4;7}
Vậy * thuộc tập hợp {1;4;7}
Để 7*2 chia hết cho 9 thì
7 + 2 + *chia hết cho 9
Ta có 7 + 2 + * = 9 + *
* thuộc {0;9}
Vậy * thuộc {0;9}
Để *63* chia hết cho cả 2;3;5;9 thì
Để *63* chia hết cho cả 2 và 5 thì tận cùng của *63* là 0 tức * thứ hai bằng 0
Thay vào ta có *630
Chia hết cho 9 cx là chia hết cho 3 nên
*630 chia hết cho 9 thì *630 = 6 + 3 + 0 + * = 9 + *
* thứ hai thuộc {0;9} mak * thứ nhất là chữ số hàng nghìn đứng đầu nên * thứ nhất chỉ có thể là 9
Vậy * thứ nhất bằng 9 và * thứ 2 bằng 0