Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta OAB\)và \(\Delta OCD\)có:
\(\widehat{AOB}=\widehat{COD}\) (đối đỉnh)
\(\widehat{OAB}=\widehat{OCD}\) (slt do AB // CD)
suy ra: \(\Delta OAB~\Delta OCD\) (g.g)
b) \(\Delta OAB~\Delta OCD\) (câu a)
\(\Rightarrow\)\(\frac{OA}{OC}=\frac{OB}{OD}\)
\(\Rightarrow\)\(OC=\frac{OA.OD}{OB}=\frac{8}{3}\)cm
c) \(\Delta OAB~\Delta OCD\) (câu a)
\(\Rightarrow\)\(\frac{S_{OAB}}{S_{OCD}}=\left(\frac{AB}{CD}\right)^2=\frac{1}{4}\)
a: Sửa đề: O là giao của AC và BD
Xét ΔADC và ΔBCD có
AD=BC
DC chung
AC=BD
=>ΔADC=ΔBCD
=>góc ODC=góc OCD=45 độ
=>ΔDOC vuông cân tại O
b: góc OAB=góc ODC=45 độ
=>ΔOAB vuông cân tại O
=>2*OB^2=AB^2
=>AB=OB*căn 2
ΔODC vuông cân tại O
=>DC=OD*căn 2
=>AB+DC=6*căn 2(cm)
Kẻ BH vuông góc DC
Xét ΔBHD vuông tại H có góc BDH=45 độ
nên BH=BD*sin45=3*căn 2(cm)
=>S ABCD=1/2*3*căn 2*6căn 2=18cm2
A B C D M N H
a) \(S_{ABCD}=\frac{\left(3+7\right).4}{2}=20\left(cm^2\right)\)
b) Ta có : MA = MD
NB = NC
\(\Rightarrow\)MN là đường trung bình của hình thang ABCD
\(\Rightarrow\)MN // BC (1)
Ta có : MD ⊥ BC
NH ⊥ BC
\(\Rightarrow\)MD // NH (2)
Từ (1) và (2) suy ra : Tứ giác MNHD là hình bình hành
Mà : \(\widehat{MDH}=90^o\)
\(\Rightarrow\)Tứ giác MNHD là hình chữ nhật (dhnb)
Vì M là trung điểm của AD
\(\Rightarrow\)MD = \(\frac{1}{2}\)AD
\(\Rightarrow\)MD = 2 cm
Vì MN là đường trung bình của hình thang ABCD
\(\Rightarrow MN=\frac{3+7}{2}=5cm\)
Vậy \(S_{MNHD}=MD.MN=2.5=10\left(cm^2\right)\)