K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C E D I M N từ I kẻ IM vuông góc AC , từ B kẻ BN vuông góc AC  => IM // BN

áp dụng định lý Menelous vào tam giác BCD có 3 điểm A ,I , E thẳng hàng và cắt 3 cạnh tam giác :

\(\dfrac{EC}{EB}\cdot\dfrac{IB}{ID}\cdot\dfrac{AD}{AC}=1\)

=> 2 . \(\dfrac{IB}{ID}\) .  3/4  = 1

=> \(\dfrac{IB}{ID}=\dfrac{4}{3}\)

\(\Rightarrow\dfrac{DI}{DB}=\dfrac{3}{7}\)

Do IM // BN => \(\dfrac{DI}{DB}=\dfrac{IM}{BN}=\dfrac{3}{7}\) 

S abc = \(\dfrac{1}{2}BN\cdot AC\)     

S iad = \(\dfrac{1}{2}IM\cdot AD\)         \(\Rightarrow\dfrac{Siad}{Sabc}=\dfrac{IM}{BN}\cdot\dfrac{AD}{AC}=\dfrac{3}{7}\cdot\dfrac{3}{4}=\dfrac{9}{28}\)

mà S iad = 18  => S abc = 28*18 : 9 = 56

22 tháng 10 2023

a: ABCD là hình chữ nhật

=>AC=BD và AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔBDC có

O,E lần lượt là trung điểm của BD,BC

=>OE là đường trung bình cuả ΔBDC

=>OE//DC và OE=DC/2

OE//DC

DC\(\perp\)BC

Do đó: OE\(\perp\)BC

=>OM vuông góc BC

Xét tứ giác OBMC có

E là trung điểm chung của OM và BC

Do đó: OBMC là hình bình hành

mà OM\(\perp\)BC

nên OBMC là hình thoi

OE=DC/2

mà AB=CD(ABCD là hình chữ nhật)

nên OE=AB/2

mà \(OE=\dfrac{OM}{2}\)

nên AB=OM

OE//CD

AB//CD

Do đó: OE//AB

=>OM//AB

Xét tứ giác ABMO có

AB//MO

AB=MO

Do đó: ABMO là hình bình hành

=>AM cắt BO tại trung điểm của mỗi đường

mà I là trung điểm của BO

nên I là trung điểm của AM

=>A,I,M thẳng hàng

b: Xét tứ giác CFME có

\(\widehat{MFC}=\widehat{ECF}=\widehat{MEC}=90^0\)

=>CFME là hình chữ nhật

=>MF//CE và MF=CE

MF//CE
E\(\in\)BC

Do đó: BE//MF

BE=CE

CE=MF

Do đó: BE=MF

Xét tứ giác BMFE có

BE//MF

BE=MF

Do đó: BMFE là hình bình hành

24 tháng 11 2017

Đề hình như có gì đó sai sai bạn nên sửa lại nhé !

24 tháng 11 2017

góc A thành 45 độ nha