\(\dfrac{x}{\sqrt{x}-1}>1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
3 tháng 9 2022

\(\dfrac{x}{\sqrt{x}-1}>1\)  (ĐK: \(x\ge0,x\ne1\))

\(\Leftrightarrow\dfrac{x}{\sqrt{x}-1}-1>0\)

\(\Leftrightarrow\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\)

\(\Leftrightarrow\sqrt{x}-1>0\)  (vì \(x-\sqrt{x}+1=x-\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\))

\(\Leftrightarrow\sqrt{x}>1\)

\(\Leftrightarrow x>1\) (thỏa mãn) 

Vậy \(x>1\)

26 tháng 11 2017

a) \(\sqrt{x+1}=7\Rightarrow x+1=49\Rightarrow x=48\)

b) \(\left(x-2\right).\left(x+\dfrac{2}{3}\right)>0\)

\(\Rightarrow\left(x-2\right).\left(x+\dfrac{2}{3}\right)\) cùng dấu

\(\Rightarrow\left\{{}\begin{matrix}x-2>0\\x+\dfrac{2}{3}>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x-2< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\)

Với \(\left\{{}\begin{matrix}x-2>0\\x+\dfrac{2}{3}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>2\\x>-\dfrac{2}{3}\end{matrix}\right.\Rightarrow x>2\)

Với \(\left\{{}\begin{matrix}x-2< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 2\\x< -\dfrac{2}{3}\end{matrix}\right.\Rightarrow x< -\dfrac{2}{3}\)

Vậy \(\left[{}\begin{matrix}x>2\\x< -\dfrac{2}{3}\end{matrix}\right.\)

c) \(\left(\dfrac{2}{3}x-1\right).\left(\dfrac{3}{4}x+\dfrac{1}{2}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x-1=0\\\dfrac{3}{4}x+\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Chúc bạn học tốt!!!!

26 tháng 11 2017

a, \(\sqrt{x+1}=7\\ \Rightarrow x+1=49\\ \Rightarrow x=48\)

b,TH1:

\(\left\{{}\begin{matrix}x-2>0\\x +\dfrac{2}{3}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\x>\dfrac{-2}{3}\end{matrix}\right.\Leftrightarrow x>2\)

TH2:

\(\left\{{}\begin{matrix}x-2< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\x< \dfrac{-2}{3}\end{matrix}\right.\Leftrightarrow x< \dfrac{-2}{3}\)

=> Vậy 2<x< \(\dfrac{-2}{3}\)

c, TH1:

\(\dfrac{2}{3}x-1=0\\ \Rightarrow\dfrac{2}{3}x=1\\ \Rightarrow x=\dfrac{3}{2}\)

TH2:

\(\dfrac{3}{4}x+\dfrac{1}{2}=0\\ \Rightarrow\dfrac{3}{4}x=\dfrac{-1}{2}\\ \Rightarrow x=\dfrac{-2}{3}\)

Vậy x = \(\dfrac{3}{2};\dfrac{-2}{3}\)

28 tháng 1 2019

Hay quá, mk cũng đang tìm câu này nè

a) ⇒ \(\dfrac{5}{3}x\) \(=\) \(\dfrac{5}{6}+\dfrac{1}{4}\)

\(\dfrac{5}{3}x=\dfrac{13}{12}\)

\(x=\dfrac{13}{12}:\dfrac{5}{3}\)

\(x=\dfrac{13}{20}\)

3 tháng 10 2017

\(linh=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}\)

\(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}\\\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}\\.............\\\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}\end{matrix}\right.\)

Suy ra:

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+....+\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{99}}>\dfrac{99}{\sqrt{100}}\)

\(linh=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+.....+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}>\dfrac{99}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}\)

\(\)\(linh>10\left(đpcm\right)\)

Bài này ko phải 100 nhé

3 tháng 10 2017

bạn nào giải giúp mình vớikhocroi

14 tháng 4 2018

19) \(\sqrt{19-x}=19\)

\(\Rightarrow\sqrt{19-x}=\sqrt{19^2}\)

\(\Rightarrow19-x=19^2\)

\(\Rightarrow19-19^2=x\)

\(\Rightarrow x=19\left(1-19\right)=-19.18=-342\)

21) \(\sqrt{x-1}=\dfrac{1}{3}\)

\(\Rightarrow\sqrt{x-1}=\sqrt{\left(\dfrac{1}{3}\right)^2}\)

\(\Rightarrow x-1=\dfrac{1}{3^2}\)

\(x=\dfrac{1+9}{9}=\dfrac{10}{9}\)

24)\(\sqrt{2x+\dfrac{5}{4}}=\dfrac{3}{2}\)

\(\Rightarrow\sqrt{2x+\dfrac{5}{4}}=\sqrt{\left(\dfrac{3}{2}\right)^2}\)

\(\Rightarrow2x+\dfrac{5}{4}=\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)

\(\Rightarrow2x=\dfrac{9-5}{4}=1\)

\(\Rightarrow x=0,5\)

25) \(\sqrt{\dfrac{x}{3}-\dfrac{7}{6}}=\dfrac{1}{6}\)

\(\Rightarrow\sqrt{\dfrac{2x-7}{6}}=\sqrt{\left(\dfrac{1}{6}\right)^2}\)

\(\Rightarrow\dfrac{2x-7}{6}=\left(\dfrac{1}{6}\right)^2=\dfrac{1}{36}\)

\(\Rightarrow\dfrac{12x-42}{36}=\dfrac{1}{36}\)

\(\Rightarrow12x-42=1\)

\(\Rightarrow12x=43\)

\(\Rightarrow x=\dfrac{43}{12}\)

29 tháng 3 2018

Ta có :

\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

.............................

\(\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+.........+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}>\dfrac{1}{10}+\dfrac{1}{10}+.....+\dfrac{1}{10}=\dfrac{100}{10}=10\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+......+\dfrac{1}{\sqrt{100}}>10\left(đpcm\right)\)

Bài 1: 

a: \(\Leftrightarrow2-3\sqrt{x}+5\sqrt{x}=8\)

=>2 căn x=6

=>căn x=3

=>x=9

b: \(\Leftrightarrow\dfrac{1}{\sqrt{x}}\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{6}\right)=\dfrac{2}{3}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x}}=\dfrac{2}{3}:\dfrac{2}{3}=1\)

=>x=1

a) \(7-\sqrt{x}=0\)

\(\Rightarrow\sqrt{x}=7\)

\(\Rightarrow x=\left(\sqrt{7}\right)^2\)

b) \(5\sqrt{x}+1=40\)

\(\Rightarrow5\sqrt{x}=39\)

\(\Rightarrow\sqrt{x}=7,8\)

\(\Rightarrow x=\left(\sqrt{7,8}\right)^2\)

c) \(\dfrac{5}{12}\sqrt{x}-\dfrac{1}{6}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{5}{12}\sqrt{x}=\dfrac{1}{2}\)

\(\Rightarrow\sqrt{x}=1,2\)

\(\Rightarrow x=\left(\sqrt{1,2}\right)^2\)

d) \(4x^2-1=0\)

\(\Rightarrow\left(2x-1\right)\left(2x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=0\Rightarrow x=0,5\\2x+1=0\Rightarrow x=-0,5\end{matrix}\right.\)

e) \(\sqrt{x+1}-2=0\)

\(\Rightarrow\sqrt{x+1}=2\)

\(\Rightarrow x+1=1,414\)

\(\Rightarrow x=0,414\)

f) \(2x^2+0,82=1\)

\(\Rightarrow2x^2=0,18\)

\(\Rightarrow x^2=0,09\)

\(\Rightarrow x=\pm0,3\)

g) Không có kết quả

19 tháng 11 2022

a: =>1/6x=-49/60

=>x=-49/60:1/6=-49/60*6=-49/10

b: =>3/2x-1/5=3/2 hoặc 3/2x-1/5=-3/2

=>x=17/15 hoặc x=-13/15

c: =>1,25-4/5x=-5

=>4/5x=1,25+5=6,25

=>x=125/16

d: =>2^x*17=544

=>2^x=32

=>x=5

i: =>1/3x-4=4/5 hoặc 1/3x-4=-4/5

=>1/3x=4,8 hoặc 1/3x=-0,8+4=3,2

=>x=14,4 hoặc x=9,6

j: =>(2x-1)(2x+1)=0

=>x=1/2 hoặc x=-1/2

22 tháng 7 2017

bn lấy máy tính mà tính ý

22 tháng 7 2017

Bài1:

Ta có:

a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)

b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)

c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)

Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)

Bài 2:

Không có đề bài à bạn?

Bài 3:

a)\(\sqrt{x}-1=4\)

\(\Rightarrow\sqrt{x}=5\)

\(\Rightarrow x=\sqrt{25}\)

\(\Rightarrow x=5\)

b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)

Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)

\(\Rightarrow\left(x-1\right)^2=16\)

\(\Rightarrow\left(x-1\right)^2=4^2\)

\(\Rightarrow x-1=4\)

\(\Rightarrow x=5\)

a: \(\left(2x+3\right)\left(3x-5\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5\ge0\\2x+3\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>=\dfrac{5}{3}\\x< =-\dfrac{3}{2}\end{matrix}\right.\)

b: \(\dfrac{x}{3-x}>-1\)

\(\Leftrightarrow\dfrac{x}{3-x}+1>0\)

\(\Leftrightarrow\dfrac{x+3-x}{3-x}>0\)

=>3-x>0

hay x<3

c: \(\dfrac{x-1}{x+5}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{x-1}{x+5}-\dfrac{3}{2}\ge0\)

\(\Leftrightarrow\dfrac{2x-2-3x-15}{2\left(x+5\right)}>=0\)

\(\Leftrightarrow\dfrac{x+17}{2\left(x+5\right)}< =0\)

=>-17<=x<-5

d: \(\dfrac{7}{4x^2-1}\ge0\)

=>4x2-1>0

=>(2x-1)(2x+1)>0

=>x>1/2 hoặc x<-1/2