Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3}{2}.\sqrt{9x-9}+24.\sqrt{\dfrac{x-1}{64}}=-17\) ( đkxđ : \(x\ge1\) )
\(\Leftrightarrow\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3}{2}.\sqrt{3^2\left(x-1\right)}+24.\sqrt{\dfrac{x-1}{8^2}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3.3}{2}.\sqrt{x-1}+\dfrac{24}{8}\sqrt{x-1}=-17\)
\(\Leftrightarrow\) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\left(\sqrt{x-1}\right)\left(\dfrac{1}{2}-\dfrac{9}{2}+3\right)=-17\)
\(\Leftrightarrow\sqrt{\left(x-1\right)}.\left(-1\right)=-17\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{-17}{-1}=17\)
\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=17^2\)
\(\Leftrightarrow x-1=289\)
\(\Leftrightarrow x=289+1=290\)
vậy x= 290 là nghiệm của phương trình a
b/ \(3x-7\sqrt{x}+4=0\) ( đkxđ : \(x\ge0\) )
\(\Leftrightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)
\(\Leftrightarrow3\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left(3\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x}-4=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{4}{3}\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{16}{9}\\x=1\end{matrix}\right.\)
vậy phương trình có tập nghiệm S=\(\left\{1;\dfrac{16}{9}\right\}\)
c/ \(-5x+7\sqrt{x}+12=0\) ( đkxđ: \(x\ge0\) )
\(\Leftrightarrow-\left(5x+5\sqrt{x}-12\sqrt{x}-12\right)=0\)
\(\Leftrightarrow-\left[5\sqrt{x}\left(\sqrt{x}+1\right)-12\left(\sqrt{x}+1\right)\right]\)= 0
\(\Leftrightarrow-\left(5\sqrt{x}-12\right)\left(\sqrt{x}+1\right)=0\)
vì \(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+1>0\)
\(\Rightarrow5\sqrt{x}-12=0\)
\(\Leftrightarrow\sqrt{x}=\dfrac{12}{5}\Rightarrow x=\dfrac{144}{25}\)
vậy \(x=\dfrac{144}{25}\) là nghiệm của phương trình c
\(< =>\sqrt[3]{x+5}=-2\)
<=> \(\left(\sqrt[3]{x+5}\right)^3=-8\)
<=> \(x+5=-8\)
<=> x=-13
\(\sqrt{x+6}-2\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x+6}>2\sqrt{x}\)
\(\Leftrightarrow x+6>4x\)
\(\Leftrightarrow-3x>-6\)
\(\Leftrightarrow x<2\)
Vậy nghiệm của BPT là x<2
\(-\dfrac{2}{\sqrt{x}+1}< \dfrac{1}{5}\left(x\ge0\right)\)
Ta có : \(\left\{{}\begin{matrix}2>0\\-\left(\sqrt{x}+1\right)< 0\forall x\ge0\end{matrix}\right.\)\(\Rightarrow-\dfrac{2}{\sqrt{x}+1}< 0< \dfrac{1}{5}\)
Vậy , phương trình nghiệm đúng với mọi : \(x\ge0\)
a/ \(x^2-2x-1< 0\)
\(\Leftrightarrow\left(x-1\right)^2< 2\)
\(\Leftrightarrow-\sqrt{2}< x-1< \sqrt{2}\)
\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
b/ \(2x^2-6x+5=\left(2x^2-\frac{2.\sqrt{2}.x.3}{\sqrt{2}}+\frac{9}{2}\right)+\frac{1}{2}=\left(\sqrt{2}x-\frac{3}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
Câu 2 tự làm nhé.
\(x^2-2x-1< 0\)
\(\left(x-2\right)x-1< 0\)
\(\left(x-2\right)x\le1\)
\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
ĐKXĐ : \(x\ge0\) và \(x\ne\dfrac{1}{9}\)
\(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}=\dfrac{6}{5}\)
\(\Leftrightarrow\dfrac{5\sqrt{x}\left(\sqrt{x}+1\right)}{5\left(3\sqrt{x}-1\right)}=\dfrac{6\left(3\sqrt{x}-1\right)}{5\left(3\sqrt{x}-1\right)}\)
\(\Leftrightarrow5\sqrt{x}\left(\sqrt{x}+1\right)=6\left(3\sqrt{x}-1\right)\)
\(\Leftrightarrow5x+5\sqrt{x}-18\sqrt{x}+6=0\)
\(\Leftrightarrow5x-13\sqrt{x}+6=0\)
\(\Leftrightarrow5x-10\sqrt{x}-3\sqrt{x}+6=0\)
\(\Leftrightarrow5\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(5\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2=0\\5\sqrt{x}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{9}{25}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{9}{25};4\right\}\)
Học tốt !
a) \(\sqrt{3}x-\sqrt{12}=0< =>\sqrt{3}x=\sqrt{12}=>x=2\)
Vay S = { 2 }
b) \(\sqrt{2}x+\sqrt{2}=\sqrt{8}+\sqrt{18}< =>\sqrt{2}x=\sqrt{8}+\sqrt{18}-\sqrt{2}< =>\sqrt{2}x=2\sqrt{2}+3\sqrt{2}-\sqrt{2}\) <=> \(\sqrt{2}x=4\sqrt{2}=>x=4\)
Vay S = { 4 }
c) \(\sqrt{5}x^2-\sqrt{20}=0< =>\sqrt{5}x^2=\sqrt{20}< =>x^2=2=>x=\sqrt{2}\)
Vay S = {\(\sqrt{2}\) }
d) \(\sqrt{x^2+6x+9}=3x+6< =>\sqrt{\left(x+3\right)^2}=3x+6< =>x+3=3x+6< =>-2x=\) \(3=>x=-\dfrac{3}{2}\)
Vay S = { - 3/2 }
e) \(\sqrt{x^2-4x+4}-2x+5=0< =>\sqrt{\left(x-2\right)^2}-2x+5=0< =>x-2-2x+5=0\) <=> \(-x+3=0< =>-x=-3=>x=3\)
Vay S = { 3 }
F) \(\sqrt{\dfrac{2x-3}{x-1}}=2\)
<=> \(\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)
Vay S = { 1/2 }
g) \(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2< =>\sqrt{\dfrac{2x-3}{x-1}}=2< =>\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)
bạn chưa có ĐKXĐ nên chưa xét kết quả có đúng vs Đk ko, có vài câu sai kết quả
\(\dfrac{x}{\sqrt{x}-1}\ge0\) (ĐK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\))
\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\\sqrt{x}-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\x< 1\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge0\\x\ge1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< 0\left(ktm\right)\\x\ge1\end{matrix}\right.\) (mà \(x\ne1\))
\(\Leftrightarrow x>1\)