Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x, y, z biết:
a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và 2x + 3y + z = 17
Giải
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}\) và 2x + 3y + z = 17
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}=\dfrac{2x+3y+z}{4+9+4}=\dfrac{17}{17}=1\)
\(\dfrac{x}{2}=1\Rightarrow x=2\)
\(\dfrac{y}{3}=1\Rightarrow y=3\)
\(\dfrac{z}{4}=1\Rightarrow z=4\)
Vậy...
b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và (x - y)2 + (y - z)2 = 2
Giải
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{\left(x-y\right)^2+\left(y-z\right)^2}{\left(2-3\right)^2+\left(3-4\right)^2}=\dfrac{2}{2}=1\)
\(\dfrac{x}{2}=1\Rightarrow x=2\)
\(\dfrac{y}{3}=1\Rightarrow y=3\)
\(\dfrac{z}{4}=1\Rightarrow z=4\)
Vậy...
a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{5x}{10}=\dfrac{3y}{9}=\dfrac{5x+3y}{10+9}=\dfrac{38}{19}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.2=4\\y=2.3=6\end{matrix}\right.\)
b) \(\dfrac{x}{3}=\dfrac{y}{5}\Rightarrow\dfrac{x^2}{3^2}=\dfrac{y^2}{5^2}=\dfrac{x^2+y^2}{9+25}=\dfrac{68}{34}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.5=10\end{matrix}\right.\)
c) Nếu phải dùng tính chất của dãy tỉ số bằng nhau thì mình không chắc mình làm đúng, thôi thì:
Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)
Vì \(x.y=10\) nên \(2k.5k=10\Rightarrow10k^2=10\Rightarrow k^2=1\Rightarrow\left[{}\begin{matrix}k=1\\k=-1\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1.2=2\\x=\left(-1\right).2=2\end{matrix}\right.\\\left[{}\begin{matrix}y=1.5=5\\y=\left(-1\right).5=-5\end{matrix}\right.\end{matrix}\right.\)
a.
\(\frac{2x}{7}=\frac{3y}{2}\Rightarrow4x=21y\)
\(x-y=17\Rightarrow x=17+y\)
\(\Rightarrow4\left(17+y\right)=21y\Rightarrow68+4y=21y\Rightarrow17y=68\Rightarrow y=4\)
\(\Rightarrow x=17+y=17+4=21\)
x/3=y/2 suy ra 2x=3y => 2x -3y =0
ta có hệ phương trình :
2x-3y =30 (1)
2x^2+3y^2 =30 (2)
từ (1) => x=30+3y/2 thay vào (2) sẽ tìm được y nha
Được y xong rồi thay vào (1) là tìm được x
đang vội nên chỉ hướng dẫn vậy thôi nhá !
Đặt \(\frac{x}{3}=\frac{y}{2}=k\Rightarrow\hept{\begin{cases}x=3k\\y=2k\end{cases}}\)
2x2 + 3y2 = 30
<=> 2.(3k)2 + 3.(2k)2 = 30
<=> 2.9k2 + 3.4k2 = 30
<=> 18k2 + 12k2 = 30
<=> 30k2 = 30
<=> k2 = 1
<=> k = ±1
Với k = 1 => x = 3 ; y = 2
Với k = -1 => x = -3 ; y = -2
a,\(\dfrac{x}{2}=\dfrac{y}{3}\) <=> \(\dfrac{5x}{10}=\dfrac{3y}{9}\)
Áp dụng T/c dãy tỉ số BN, ta có:
\(\dfrac{5x+3y}{10+9}=\dfrac{38}{19}=2\). Từ đó suy ra: x=2.10:5=4
y=2.9:3=6
b, \(\dfrac{x}{3}=\dfrac{y}{5}\) <=> \(\dfrac{x^2}{9}=\dfrac{y^2}{25}\)
Áp dụng ......, ta có:
\(\dfrac{x^2+y^2}{9+25}=\dfrac{68}{34}=2\). Từ đó suy ra: x2=2.9=18=>x=..... (xem lại đề)
y2=2.25=50=>y=.... (xem lại đề)
c, \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x.y}{2.5}=\dfrac{10}{10}=1\)
=> x=1.2=2
y=1.5=5
a)
ĐKXĐ: \(2x\geq 0\Leftrightarrow x\geq 0\)
Vậy TXĐ của $x$ là \(D= [0;+\infty)\)
b)
ĐK: \((2x-1)(x+3)\neq 0\Leftrightarrow \left\{\begin{matrix} 2x-1\neq 0\\ x+3\neq 0\end{matrix}\right.\Leftrightarrow \Leftrightarrow \left\{\begin{matrix} x\neq \frac{1}{2}\\ x\neq -3\end{matrix}\right.\)
Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{1}{2}; -3\right\}\)
c)
ĐK: \(8x^3+1\neq 0\Leftrightarrow x^3\neq \frac{-1}{8}\Leftrightarrow x\neq \frac{-1}{2}\)
Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{-1}{2}\right\}\)
d)
ĐK:
\(|x-2015|+1\neq 0\Leftrightarrow |x-2015|\neq -1\Leftrightarrow x\in\mathbb{R}\)
Vậy TXĐ \(D=\mathbb{R}\)
e)
ĐK: \(\left\{\begin{matrix} |x-1,2|\neq 0\\ 2x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 1,2\\ x\neq 2,5\end{matrix}\right.\)
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{1,2; 2,5\right\}\)
f)
ĐK: \(x^2-4\neq 0\Leftrightarrow (x-2)(x+2)\neq 0\Leftrightarrow x\neq \pm 2\)
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{\pm 2\right\}\)
Bài 1:
a) Ta có:
\(\frac{x}{3}=\frac{y}{7}\) và \(x.y=84.\)
Đặt \(\frac{x}{3}=\frac{y}{7}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=7k\end{matrix}\right.\)
Lại có: \(x.y=84\)
\(\Rightarrow3k.7k=84\)
\(\Rightarrow21.k^2=84\)
\(\Rightarrow k^2=84:21\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2.\)
+ TH1: \(k=2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=7.2=14\end{matrix}\right.\)
+ TH2: \(k=-2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-2\right)=-6\\y=7.\left(-2\right)=-14\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;14\right),\left(-6;-14\right).\)
Bài 2:
a) Ta có:
Tham khảo nha:
Biến đổi biểu thức tương đương : (x^2 - 1) /2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : {1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; =>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Chúc bạn học có hiệu quả!
\(\frac{x-1}{-15}=\frac{-60}{x-1}\)
\(\Leftrightarrow\left(x-1\right)^2=900\\ \Leftrightarrow\left(x-1\right)^2=\left(\pm30\right)^2\\ \Rightarrow x-1\in\left\{30;-30\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=30\\x-1=-30\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=31\\x=-29\end{matrix}\right.\)
Vậy...
a. Áp dụng t/c dãy tỉ sô bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{3y}{12}=\dfrac{x-3y}{3-12}=\dfrac{36}{-9}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=-4\Rightarrow x=-12\\\dfrac{y}{4}=-4\Rightarrow y=-16\end{matrix}\right.\)
Vậy.............
b. Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x+3y}{4+9}=\dfrac{39}{13}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=3\Rightarrow x=6\\\dfrac{y}{3}=3\Rightarrow y=9\end{matrix}\right.\)
Vậy.........
c. Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{4x}{12}=\dfrac{3y}{15}=\dfrac{4x-3y}{12-15}=\dfrac{12}{-3}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=-4\Rightarrow x=-12\\\dfrac{y}{5}=-4\Rightarrow y=-20\end{matrix}\right.\)
Vậy............
a, \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{3}=\dfrac{3y}{12}\)
Áp dụng t/c dãy tỉ số = nhau ,ta có :
\(\dfrac{x}{3}=\dfrac{3y}{12}=\dfrac{x-3y}{3-12}=\dfrac{36}{-9}=-4\)
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=-4\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-16\end{matrix}\right.\)
Vậy ...
b,c tương tự