\(\dfrac{x+2}{x-3}+\dfrac{x}{x+2}=\dfrac{x^2+6}{x^2-x-6}\)

Giải phương trình 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>x^2-4+x^2-3x=x^2+6

=>x^2-3x-4=6

=>x^2-3x-10=0

=>(x-5)(x+2)=0

=>x=5(nhận) hoặc x=-2(loại)

19 tháng 1 2018

a/\(\dfrac{8}{x-8}+1+\dfrac{11}{x-11}+1=\dfrac{9}{x-9}+1+\dfrac{10}{x-10}+1\)

=>\(\dfrac{8+x-8}{x-8}+\dfrac{11+x-11}{x-11}=\dfrac{9+x-9}{x-9}+\dfrac{10+x-10}{x-10}\)

=>\(\dfrac{x}{x-8}+\dfrac{x}{x-11}-\dfrac{x}{x-9}-\dfrac{x}{x-10}=0\)

=>x.\(\left(\dfrac{1}{x-8}+\dfrac{1}{x-11}+\dfrac{1}{x-9}+\dfrac{1}{x-10}\right)=0\)

=>x=0

b/\(\dfrac{x}{x-3}-1+\dfrac{x}{x-5}-1=\dfrac{x}{x-4}-1+\dfrac{x}{x-6}-1\)

=>\(\dfrac{x-x+3}{x-3}+\dfrac{x-x+5}{x-5}-\dfrac{x-x+4}{x-4}-\dfrac{x-6+6}{x-6}=0\)

=>\(\dfrac{3}{x-3}+\dfrac{5}{x-5}-\dfrac{4}{x-4}-\dfrac{6}{x-6}=0\)

Đến đây thì bạn giải giống câu a

giải cho mk 2 câu cuối đi

24 tháng 3 2017

bạn nên bổ sung chữ "bất"haha

1)

\(x-\dfrac{x-1}{3}+\dfrac{x+2}{6}>\dfrac{2x}{5}+5\\ \Leftrightarrow x-\dfrac{x-1}{3}+\dfrac{x+2}{6}-\dfrac{2x}{5}-5>0\\ \Leftrightarrow\dfrac{30x-10\left(x-1\right)+5\left(x+2\right)-2x\cdot6-5\cdot30}{30}>0\\ \Leftrightarrow30x-10x+10+5x+10-12x-150>0\\ \Leftrightarrow30x-10x=5x-12x>-10-10+150\\ \Leftrightarrow13x>130\\ \Leftrightarrow13x\cdot\dfrac{1}{13}>130\cdot\dfrac{1}{13}\\ \Leftrightarrow x>10\)

Vậy tập ngiệm của bât hương trình là {x/x>10}

mình mới học đến đây nên cách giải còn dài, thông cảm nha

24 tháng 3 2017

2)

\(\dfrac{2x+6}{6}-\dfrac{x-2}{9}< 1\\ \Leftrightarrow\dfrac{2\left(x+3\right)}{6}-\dfrac{x-2}{9}< 1\\ \Leftrightarrow\dfrac{x+3}{3}-\dfrac{x-2}{9}-1< 0\\ \Leftrightarrow\dfrac{3\left(x+3\right)-x+2-9}{9}< 0\\ \Leftrightarrow3x+9-x+2-9< 0\\ \Leftrightarrow3x-x< -9+9-2\\ \Leftrightarrow2x< -2\\ \Leftrightarrow2x\cdot\dfrac{1}{2}< -2\cdot\dfrac{1}{2}\Leftrightarrow x< -1\)

Vậy tập nghiệm của bất phương trình là {x/x<-1}

22 tháng 4 2017

a) ĐKXĐ: x # 1

Khử mẫu ta được: 2x - 1 + x - 1 = 1 ⇔ 3x = 3 ⇔ x = 1 không thoả mãn ĐKXĐ

Vậy phương trình vô nghiệm.

b) ĐKXĐ: x # -1

Khử mẫu ta được: 5x + 2x + 2 = -12

⇔ 7x = -14

⇔ x = -2

Vậy phương trình có nghiệm x = -2.

c) ĐKXĐ: x # 0.

Khử mẫu ta được: x3 + x = x4 + 1

⇔ x4 - x3 -x + 1 = 0

⇔ x3(x – 1) –(x – 1) = 0

⇔ (x3 -1)(x - 1) = 0

⇔ x3 -1 = 0 hoặc x - 1 = 0

1) x - 1 = 0 ⇔ x = 1

2) x3 -1 = 0 ⇔ (x - 1)(x2 + x + 1) = 0

⇔ x = 1 hoặc x2 + x + 1 = 0 ⇔ \(\left(x+\dfrac{1}{2}\right)^2=-\dfrac{3}{4}\) (vô lí)

Vậy phương trình có nghiệm duy nhất x = 1.

d) ĐKXĐ: x # 0 -1.

Khử mẫu ta được x(x + 3) + (x + 1)(x - 2) = 2x(x + 1)

⇔ x2 + 3x + x2 – 2x + x – 2 = 2x2 + 2x

⇔ 2x2 + 2x - 2 = 2x2 + 2x

⇔ 0x = 2

Phương trình 0x = 2 vô nghiệm.

Vậy phương trình đã cho vô nghiệm

29 tháng 1 2018

a)\(\dfrac{2x-1}{x-1}+\dfrac{x-1}{x-1}=\dfrac{1}{x-1}\)

=>2x-1 + x-1 =1

<=>2x +x=1+1+1

<=>3x=3

<=>x=1

vậy S= {1}

22 tháng 4 2017

a) ĐKXĐ: x # -5

\(\dfrac{2x-5}{x+5}=3\)\(\dfrac{2x-5}{x+5}=\dfrac{3\left(x+5\right)}{x+5}\)

⇔ 2x - 5 = 3x + 15

⇔ 2x - 3x = 5 + 20

⇔ x = -20 thoả ĐKXĐ

Vậy tập hợp nghiệm S = {-20}

b) ĐKXĐ: x # 0

\(\dfrac{x^2-6}{x}=x+\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(x^2+6\right)}{2x}=\dfrac{2x^2+3x}{2x}\)

Suy ra: 2x2 – 12 = 2x2 + 3x ⇔ 3x = -12 ⇔ x = -4 thoả x # 0

Vậy tập hợp nghiệm S = {-4}.

c) ĐKXĐ: x # 3

\(\dfrac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\) ⇔ x(x + 2) - 3(x + 2) = 0

⇔ (x - 3)(x + 2) = 0 mà x # 3

⇔ x + 2 = 0

⇔ x = -2

Vậy tập hợp nghiệm S = {-2}

d) ĐKXĐ: x # \(-\dfrac{2}{3}\)

\(\dfrac{5}{3x+2}=2x-1\Leftrightarrow\dfrac{5}{3x+2}=\dfrac{\left(2x-1\right)\left(3x+2\right)}{3x+2}\)

⇔ 5 = (2x - 1)(3x + 2)

⇔ 6x2 – 3x + 4x – 2 – 5 = 0

⇔ 6x2 + x - 7 = 0

⇔ 6x2 - 6x + 7x - 7 = 0

⇔ 6x(x - 1) + 7(x - 1) = 0

⇔ (6x + 7)(x - 1) = 0

⇔ x = \(-\dfrac{7}{6}\) hoặc x = 1 thoả x # \(-\dfrac{2}{3}\)

Vậy tập nghiệm S = {1;\(-\dfrac{7}{6}\)}.

7 tháng 3 2021

a)ĐKXĐ:x≠-5

Khử mẫu:2x-5=3(x+5)   (1)

giải phương trình (1),ta được:

(1)⇔2x-5=3x+15

    ⇔2x-3x=15+5

    ⇔-x=20⇔x=-20(TM)

vậy phương trình đã cho có nghiệm x=-20

21 tháng 1 2018

a) \(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\)

\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3\left(2x+1\right)}{6}=\dfrac{x}{6}=\dfrac{6x}{6}\)

\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)

\(\Leftrightarrow2x-6x-3=x-6x\)

\(\Leftrightarrow2x-6x-x+6x=3\)

\(\Leftrightarrow x=3\)

\(S=\left\{3\right\}\)

b) \(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)

\(\Leftrightarrow\dfrac{4\left(2+x\right)}{20}-\dfrac{10x}{20}=\dfrac{5\left(1-2x\right)}{20}+\dfrac{5}{20}\)

\(\Leftrightarrow4\left(2+x\right)-10x=5\left(1-2x\right)+5\)

\(\Leftrightarrow8+4x-10x=5-10x+5\)

\(\Leftrightarrow4x-10x+10x=5+5-8\)

\(\Leftrightarrow4x=2\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

\(S=\left\{\dfrac{1}{2}\right\}\)

22 tháng 4 2017

a)X= 3

b)X= 0,5

22 tháng 5 2017

a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)

\(\Leftrightarrow\dfrac{4x+\left(2x-1\right)}{6}=\dfrac{24-2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow6x+2x=24+1\)

\(\Leftrightarrow8x=25\)

\(\Leftrightarrow x=\dfrac{25}{8}\)

Vậy phương trình có một nghiệm là x = \(\dfrac{25}{8}\)

b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)

\(\Leftrightarrow\dfrac{6\left(x-1\right)+3\left(x-1\right)}{12}=\dfrac{12-8\left(x-1\right)}{12}\)

\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)

\(\Leftrightarrow9\left(x-1\right)+8\left(x-1\right)=12\)

\(\Leftrightarrow17\left(x-1\right)=12\)

\(\Leftrightarrow17x-17=12\)

\(17x=12+17\)

\(\Leftrightarrow17x=29\)

\(\Leftrightarrow x=\dfrac{29}{17}\)

Vậy phương trình có một nghiệm là x = \(\dfrac{29}{17}\)

c) \(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)

\(\Leftrightarrow\dfrac{2-x}{2001}-\dfrac{1-x}{2002}-\dfrac{\left(-x\right)}{2003}=1\)

\(\Leftrightarrow\dfrac{2-x}{2001}+1-\dfrac{1-x}{2002}-1-\dfrac{\left(-x\right)}{2003}-1=1+1-1-1\)

\(\Leftrightarrow\dfrac{2-x}{2001}+\dfrac{2001}{2001}-\dfrac{1-x}{2002}-\dfrac{2002}{2002}-\dfrac{\left(-x\right)}{2003}-\dfrac{2003}{2003}=0\)

\(\Leftrightarrow\dfrac{2003-x}{2001}-\dfrac{2003-x}{2002}-\dfrac{2003-x}{2003}=0\)

\(\Leftrightarrow\left(2003-x\right)\left(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow2003-x=0\)

\(\Leftrightarrow-x=-2003\)

\(\Leftrightarrow x=2003\)

Vậy phương trình có một nghiệm là x = 2003

29 tháng 5 2017

a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)

\(\Leftrightarrow\dfrac{4x}{6}+\dfrac{2x-1}{6}=\dfrac{24}{6}-\dfrac{2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow4x+2x+2x=1+24\)

\(\Leftrightarrow8x=25\)

\(\Leftrightarrow x=\dfrac{25}{8}\)

Vậy S={\(\dfrac{25}{8}\)}

b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)

\(\Leftrightarrow\dfrac{6\left(x-1\right)}{12}+\dfrac{3\left(x-1\right)}{12}=\dfrac{12}{12}-\dfrac{8\left(x-1\right)}{12}\)

\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)

\(\Leftrightarrow6x-6+3x-3=12-8x+8\)

\(\Leftrightarrow6x+3x+8x=6+3+12+8\)

\(\Leftrightarrow17x=29\)

\(\Leftrightarrow x=\dfrac{29}{17}\)

Vậy S={\(\dfrac{29}{17}\)}

1 tháng 9 2018

a) điều kiện xác định : \(x\ne2;x\ne-1\)

ta có : \(\dfrac{x+2}{x+1}+\dfrac{3}{x-2}=\dfrac{3}{x^2-x-2}+1\)

\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{3+x^2-x-2}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow x^2-4+3x+3=x^2-x+1\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\left(tmđk\right)\)

vậy \(x=\dfrac{1}{2}\)

b) điều kiện xác định : \(x\ne5;x\ne-6\)

ta có : \(\dfrac{x+6}{x-5}+\dfrac{x-5}{x+6}=\dfrac{2x^2+23x+61}{x^2+x-30}\)

\(\Leftrightarrow\dfrac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x-5\right)\left(x+6\right)}=\dfrac{2x^2+23x+61}{\left(x-5\right)\left(x+6\right)}\)

\(\Rightarrow x^2+12x+36+x^2-25x+25=2x^2+23x+61\)

\(\Leftrightarrow-13x=23x\Leftrightarrow x=0\left(tmđk\right)\)

vậy \(x=0\)

27 tháng 2 2021

Chỗ phép tính có dấu "=>"ở cuối cùng của câu b) bị sai nha, (x-5)²=x²-10x+25 mà