Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. A=\(\dfrac{-2}{x^{2^{ }}-2x+5}\)= \(\dfrac{-2}{\left(x-1\right)^{2^{ }}+4}\)
Ta có: (x-1) 2 ≥ 0 với mọi x
⇔ (x- 1)2 +4 ≥4
⇔ \(\dfrac{-2}{\left(x-1\right)^{2^{ }}+4}\)≤ \(\dfrac{-2}{4}\) = \(\dfrac{-1}{2}\)
Dấu''='' xảy ra ⇔ x-1=0
⇔x=1
Vậy maxA= -0,5 ⇔ x=1
b. B=\(\dfrac{3}{x^{2^{ }}-2x+1}\)=\(\dfrac{3}{\left(x-1\right)^2}\)
Ta có: (x-1)2 ≥ 0 với mọi x
⇔ \(\dfrac{3}{\left(x-1\right)^2}\)≤0
BT1.
a,Ta có :\(A^2=-5x^2+10x+11\)
\(=-5\left(x^2-2x+1\right)+16\)
\(=-5\left(x-1\right)^2+16\)
Vì \(\left(x-1\right)^2\ge0\Rightarrow-5\left(x-1\right)^2\le0\)
\(\Rightarrow A^2\le16\Rightarrow A\le4\)
Dấu ''='' xảy ra \(\Leftrightarrow x=1\)
Vậy Max A = 4 \(\Leftrightarrow x=1\)
Câu b,c tương tự nhé.
1
do x,y bình đẳng như nhau giả sử \(x\ge y\)
Ta có:x2018+y2018=2
mà \(x^{2018}\ge0,y^{2018}\ge0\)
\(\Rightarrow x^{2018}+y^{2018}\ge0\)
Do \(x^{2018}+y^{2018}=2=1+1=2+0\)(do x lớn hơn hoặc bằng y)
Với \(x^{2018}+y^{2018}=1+1\)\(\Rightarrow x^{2018}=y^{2018}=1\)
\(\Rightarrow x=y=1;x=y=-1;x=1,y=-1\)(do x lớn hơn hoặc bằng y)
\(\Rightarrow Q=1+1=2\)\(\left(1\right)\)
Với \(x^{2018}+y^{2018}=2+0\)\(\Rightarrow x^{2018}=2\)(vô lý vỳ x,y thuộc Z)
Vậy........................
bạn bt lm không chỉ mình với