Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)vì\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=\(\dfrac{z}{5}\)=>\(\dfrac{2x}{6}\)=\(\dfrac{3y}{12}\)=\(\dfrac{5z}{25}\)và 2x+3y+5z=86
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{2x}{6}\)=\(\dfrac{3y}{12}\)=\(\dfrac{5z}{25}\)=\(\dfrac{2x+3y+5z}{6+12+25}\)\(\dfrac{86}{43}\)=2
vì\(\dfrac{2x}{6}\)=2=>2x=2.6=12=>x=12:2=6
\(\dfrac{3y}{12}\)=2=>3y=12.2=24=>y=24:3=8
\(\dfrac{5z}{25}\)=2=>5z=25.2=50=>z=50:5=10
vậy x=6,y=8,z=10
vì\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=>\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)(1)
\(\dfrac{y}{6}\)=\(\dfrac{z}{8}\)=>\(\dfrac{y}{12}\)=\(\dfrac{z}{16}\)(2)
từ (1)(2)=>\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)=\(\dfrac{z}{16}\)=>\(\dfrac{3x}{27}\)=\(\dfrac{2y}{24}\)=\(\dfrac{z}{16}\)và 3x-2y-z=13
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{3x}{27}\)=\(\dfrac{2y}{24}\)=\(\dfrac{z}{16}\)=\(\dfrac{3x-2y-z}{27-24-16}\)=\(\dfrac{13}{-13}\)=-1
vì\(\dfrac{3x}{27}\)=-1=>3x=-1.27=-27=>x=-27x;3=-9
\(\dfrac{2y}{24}\)=-1=>2y=-1.24=-24=>y=-24:2=-12
\(\dfrac{z}{16}\)=-1=>z=-1.16=-16
vậy...
Từ \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}\)
Và \(\dfrac{y}{6}=\dfrac{z}{8}\Rightarrow\)\(\dfrac{y}{12}=\dfrac{z}{16}\)
Suy ra \(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\)\(\Rightarrow\dfrac{3x}{27}=\dfrac{2y}{24}=\dfrac{z}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{27}=\dfrac{2y}{24}=\dfrac{z}{16}=\dfrac{3x-2y-z}{27-24-16}=\dfrac{13}{-13}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=-1\Rightarrow x=-1\cdot9=-9\\\dfrac{y}{12}=-1\Rightarrow y=-1\cdot12=-12\\\dfrac{z}{16}=-1\Rightarrow z=-1\cdot16=-16\end{matrix}\right.\)
Ta có :
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x}{9}=\dfrac{y}{12}\)(1)
\(\dfrac{y}{6}=\dfrac{z}{8}=\dfrac{y}{12}=\dfrac{z}{16}\)(2)
Từ (1) và (2) , suy ra \(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ; ta được :
\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}=\dfrac{3x}{27}=\dfrac{2y}{24}=\dfrac{z}{16}=\dfrac{3x-2y-z}{27-24-16}=\dfrac{13}{-13}=-1\)
Do đó :
\(\dfrac{x}{9}=-1\Rightarrow x=-1.9=-9\)
\(\dfrac{y}{12}=-1\Rightarrow y=-1.12=-12\)
\(\dfrac{z}{16}=-1\Rightarrow z=-1.16=-16\)
Vậy x = -9 ; y = -12 ; z = -16
a. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{6}=\dfrac{y}{10}=\dfrac{z}{21}=\dfrac{5x+y-2z}{6\cdot5+10-2\cdot21}=\dfrac{28}{-2}=-14\)
\(\Rightarrow x=\left(-14\right)6=-84;y=\left(-14\right)10=-140;z=\left(-14\right)21=-294\)
Vậy \(x=-84;y=-140;z=-294\)
b. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-z}{2\cdot15+3\cdot20-28}=\dfrac{124}{62}=2\)
\(x=2\cdot15=30;y=2\cdot20=40;z=2\cdot28=56\)
Vậy \(x=30;y=40;z=56\)
c. Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}=\dfrac{12x+12y+12z}{18+16+15}=\dfrac{12\left(x+y+z\right)}{49}=\dfrac{12\cdot49}{49}=12\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{12x}{18}=12\\\dfrac{12y}{16}=12\\\dfrac{12z}{15}=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}12x=216\\12y=192\\12z=180\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)
Vậy \(x=18;y=16;z=15\)
d. Ta có:
\(3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\)
\(7y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{15}=\dfrac{z}{21}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng tính chất của tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)
\(\Rightarrow x=2\cdot10=20;y=2\cdot15=30;z=2\cdot21=42\)
Vậy \(x=20;y=30;z=42\)
a) \(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}\Leftrightarrow\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{42}\)\(=\dfrac{5x+y-2z}{50+6-42}=\dfrac{28}{14}=2\)
\(\Rightarrow\dfrac{5x}{50}=2\Rightarrow5x=100\Rightarrow x=20\)
\(\Rightarrow\dfrac{y}{6}=2\Rightarrow y=2.6\Rightarrow y=12\)
\(\Rightarrow\dfrac{2z}{42}=2\Rightarrow2z=84\Rightarrow z=42\)
Vậy \(x=20;y=12\) và \(z=42\)
a, 1+2y / 18 = 1+4y / 24 = 1+6y / 6x
Ta có : 1+2y / 18 = 1+6y / 6x = 1+2y + 1+6y / 18 + 6y
= 2+ 8y / 18+6y = 2 (1+4y) / 2( 9 +3y) = 1+4y/9+3y
Ta lại có : 1 + 4y/24 = 1+4y / 9+3y
=> 24=9+3y => 15=3y => y=5
Vậy y=5
Nhớ like
b, 1+3y/12 = 1+5y/5x = 1+7y/4x
Ta có : 1+3y/12 = 1+7y/4x = 1+3y+1+7y / 12 +4x
= 2 + 10y / 12 +4x = 2 (1+5y) / 2 (6+2x) = 1+5y / 6+2x
Ta lại có: 1+5y / 5x = 1+5y / 6+2x
=> 5x = 6+2x => 3x = 6 => x=2
Vậy x =2
a) \(\dfrac{12-7x}{-13}=\dfrac{4-3x}{-5}\)
\(\Rightarrow\left(12-7x\right).\left(-5\right)=\left(-13\right).\left(4-3x\right)\)
\(\Leftrightarrow35x-60=39x-52\)
\(\Rightarrow35x-39x=60-52\)
\(\Rightarrow-4x=8\)
\(\Rightarrow x=-2\)
Vậy \(x=-2.\)
b) Giải
Đặt \(\dfrac{x}{5}=\dfrac{y}{7}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=7k\end{matrix}\right.\)
Mà \(x+y=48\)
\(\Rightarrow5k+7k=48\)
\(\Leftrightarrow12k=48\)
\(\Leftrightarrow k=48:12\)
\(\Leftrightarrow k=4\)
Vậy \(\left\{{}\begin{matrix}x=5k=5.4=20\\y=7k=7.4=28\end{matrix}\right.\).
c) Giải
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Mà \(x^2+y^2=100\)
\(\Rightarrow\left(3k\right)^2+\left(4k\right)^2=100\)
\(\Leftrightarrow3^2.k^2+4^2.k^2=100\)
\(\Leftrightarrow k^2\left(3^2+4^2\right)=100\)
\(\Leftrightarrow k^2.25=100\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2\)
\(\circledast k=2\Rightarrow\left\{{}\begin{matrix}x=3k=3.2=6\\x=4k=4.2=8\end{matrix}\right.\)
\(\circledast k=-2\Rightarrow\left\{{}\begin{matrix}x=3k=3.\left(-2\right)=-6\\y=4k=4.\left(-2\right)=-8\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=6;y=8\\x=-6;y=-8\end{matrix}\right.\).
\(a,\dfrac{12-7x}{-13}=\dfrac{4-3x}{-5}\)
⇒ \(\dfrac{-12+7x}{13}=\dfrac{-4+3x}{5}\)
⇒ \(5.\left(-12+7x\right)=13.\left(-4+3x\right)\)
⇒ \(-60+35x=-52+39x\)
⇒ \(-60+52=39x-35x\)
⇒ \(-8=4x\)
⇒ \(x=-8:4\)
⇒ \(x=-2\)
\(b,\dfrac{x}{5}=\dfrac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)
⇒ \(\dfrac{x}{5}=4;\dfrac{y}{7}=4\)
⇒ \(x=5.4;y=7.4\)
⇒ \(x=20;y=28\)
\(c,\dfrac{x}{3}=\dfrac{y}{4}\)
⇒ \(\left(\dfrac{x}{3}\right)^2=\left(\dfrac{y}{4}\right)^2=\dfrac{x^2}{3^2}=\dfrac{y^2}{4^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
⇒\(\dfrac{x^2}{9}=4;\dfrac{y^2}{16}=4\)
⇒ \(x^2=9.4;y^2=16.4\)
⇒ \(x^2=36;y^2=64\)
⇒ \(x=+-6;y=+-8\)
Vì \(\dfrac{x}{3}=\dfrac{y}{4}\) nên x;y cùng dấu
⇒ \(x=6,y=8\)
\(x=-6,y=-8\)
a: \(\Leftrightarrow x^3=-216\)
=>x=-6
b: \(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)
=>x=8; y=10; z=7
Lời giải:
Ta có:
\(\frac{2}{x+1}=\frac{3}{2y-3}\Leftrightarrow 2(2y-3)=3(x+1)\)
\(\Leftrightarrow 4y-6=3x+3\)
\(\Leftrightarrow 4y=3x+9\)
Thay vào biểu thức P:
\(P=\frac{3x+2y}{x-2y+4}=\frac{6x+4y}{2x-4y+8}\) \(=\frac{6x+3x+9}{2x-(3x+9)+8}\)
\(P=\frac{9x+9}{-x-1}=\frac{9(x+1)}{-(x+1)}=-9\)
Mik xin loi, de dung la
\(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{y}=\dfrac{z}{8}\)va \(3x-2y-z=13\)
Câu 2:
\(\dfrac{x+2000}{x-2000}=\dfrac{y+2001}{y-2001}\)
\(\Leftrightarrow\left(x+2000\right)\left(y-2001\right)=\left(x-2000\right)\left(y+2001\right)\)
\(\Leftrightarrow xy-2001x+2000y-4002000=xy+2001x-2000y-4002000\)
=>-2001x+2000y=2001x-2000y
=>-4002x=-4000y
=>2001x=2000y
hay x/y=2000/2001
Áp dụng t/c dtsbn ta có
\(\dfrac{x}{12}=\dfrac{y}{13}=\dfrac{3x+2y}{3.12+2.13}=\dfrac{124}{62}=2\)
\(\dfrac{x}{12}=2\Rightarrow x=24\\ \dfrac{y}{13}=2\Rightarrow y=26\)
\(\dfrac{x}{12}=\dfrac{y}{13}=\dfrac{3x+2y}{3.12+2.13}=\dfrac{124}{62}=2\)
\(\left\{{}\begin{matrix}x=12.2=24\\y=13.2=26\end{matrix}\right.\)