Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:
a) \(\dfrac{1}{3}x+\dfrac{1}{5}-\dfrac{1}{2}x=1\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{6}x=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{1}{6}x=\dfrac{-21}{20}\)
\(\Leftrightarrow x=\dfrac{-63}{10}\)
Vậy ...
b) \(\dfrac{3}{2}\left(x+\dfrac{1}{2}\right)-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{3}{2}x+\dfrac{3}{4}-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{11}{8}x=\dfrac{-1}{2}\)
\(\Leftrightarrow x=\dfrac{-4}{11}\)
Vậy ...
Các câu sau làm tương tự câu b)

a)\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)=\left(x+1\right)\left(\dfrac{1}{13}+\dfrac{1}{14}\right)\)
\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
b)\(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)
\(1+\dfrac{x+4}{2014}+1+\dfrac{x+3}{2015}=1+\dfrac{x+2}{2016}+1+\dfrac{x+1}{2017}\)
\(\Rightarrow\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)
Giải tương tự câu a ta được \(x=-2018\)
a) \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Rightarrow6006\left(x+1\right)+5460\left(x+1\right)+5005\left(x+1\right)=4620\left(x+1\right)+4290\left(x+1\right)\)
\(\Leftrightarrow\left(6006+5460+5005\right)\cdot\left(x+1\right)=\left(4620+4290\right)\cdot\left(x+1\right)\)
\(\Leftrightarrow16471\left(x+1\right)=8910\left(x+1\right)\)
\(\Leftrightarrow16471x+16471=8910x+8910\)
\(\Leftrightarrow16471x-8910x=8910-16471\)
\(\Leftrightarrow7561x=-7561\)
\(\Rightarrow x=-1\)
Vậy \(x=-1\)
b) \(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)
\(\Rightarrow4096749040\left(x+4\right)+4094735904\left(x+3\right)=4092704785\left(x+2\right)+4090675680\left(x+1\right)\)
\(\Leftrightarrow4096769040x+16387076160+4094735904x+12284207712=4092704785x+8185409570+4090675680x+4090675680\)
\(\Leftrightarrow8191504944x+28671283872=8183380465x+12276085250\)
\(\Leftrightarrow8191504944x-8183380465x=12276085250-28671283872\)
\(\Leftrightarrow8124479x=-16395198622\)
\(\Rightarrow x=-2018\)
Vậy \(x=-2017\)
P/s: đây không phải cách làm tối ưu, vì vậy mình nghĩ bạn nên tham khảo từ các bài làm khác nhé!

bài 1) ta có : \(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow2\left(x+y\right)=3\left(2x-y\right)\)
\(\Leftrightarrow2x+2y=6x-3y\Leftrightarrow4x=5y\Leftrightarrow\dfrac{x}{y}=\dfrac{5}{4}\)
vậy \(\dfrac{x}{y}=\dfrac{5}{4}\)
bài 1
\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow\dfrac{2.\dfrac{x}{y}-1}{\dfrac{x}{y}+1}=\dfrac{2.\dfrac{x}{y}+2-3}{\dfrac{x}{y}+1}=2-\dfrac{3}{\dfrac{x}{y}+1}=\dfrac{2}{3}\)
\(2-\dfrac{2}{3}=\dfrac{4}{3}=\dfrac{3}{\dfrac{x}{y}+1}\)
\(\left(\dfrac{x}{y}+1\right)=\dfrac{9}{4}\Rightarrow\dfrac{x}{y}=\dfrac{9}{4}-\dfrac{4}{4}=\dfrac{5}{4}\)

Các câu dễ tự làm :v
\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x+2004=0\Rightarrow x=-2004\)

1: \(\Leftrightarrow3x+4=2\)
=>3x=-2
=>x=-2/3
2: \(\Leftrightarrow7x-7=6x-30\)
=>x=-23
3: =>\(5x-5=3x+9\)
=>2x=14
=>x=7
4: =>9x+15=14x+7
=>-5x=-8
=>x=8/5

a, \(\dfrac{3}{4}+x=\dfrac{8}{13}\)
\(x=\dfrac{8}{13}-\dfrac{3}{4}\)
\(x=-\dfrac{7}{52}\)
b,\(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{1}{4}\)
\(x=\dfrac{1}{4}-\dfrac{2}{5}\)
\(x=-\dfrac{3}{20}\)
c, \(2x\left(x-\dfrac{1}{7}\right)=0\)
\(2x-\dfrac{1}{7}=0\)
\(x-\dfrac{1}{7}=0:2\)
\(x-\dfrac{1}{7}=0\)
\(x=0-\dfrac{1}{7}\)
\(x=\dfrac{1}{7}\)
d, \(\dfrac{3}{4}+\dfrac{1}{4}\div x=\dfrac{2}{5}\)
\(\left(\dfrac{3}{4}+\dfrac{1}{4}\right):x=\dfrac{2}{5}\)
\(1:x=\dfrac{2}{5}\)
\(x=1:\dfrac{2}{5}\)
\(x=\dfrac{5}{2}\)
a) \(\dfrac{3}{4}+x=\dfrac{8}{13}\)\(\Leftrightarrow\) \(x=\dfrac{8}{13}-\dfrac{3}{4}=\dfrac{-7}{52}\) vậy \(x=\dfrac{-7}{52}\)
b) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\) \(\Leftrightarrow\) \(\dfrac{11}{12}-\dfrac{2}{5}-x=\dfrac{2}{3}\) \(\Leftrightarrow\) \(x=\dfrac{11}{12}-\dfrac{2}{5}-\dfrac{2}{3}=\dfrac{-3}{20}\) vậy \(x=\dfrac{-3}{20}\)
c) \(2x\left(x-\dfrac{1}{7}\right)=0\) \(\Leftrightarrow\) \(2x^2-\dfrac{2}{7}x=0\)
\(\Delta\) = \(\left(\dfrac{-2}{7}\right)^2-4.2.0=\dfrac{4}{49}>0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{\dfrac{2}{7}+\sqrt{\dfrac{4}{49}}}{4}=\dfrac{1}{7}\)
\(x_2=\dfrac{\dfrac{2}{7}-\sqrt{\dfrac{4}{49}}}{4}=0\)
vậy \(x=0;x=\dfrac{1}{7}\)

a) \(2\left(4x-30\right)-3\left(x+5\right)+4\left(x-10\right)=5\left(x+2\right)\)
\(\Leftrightarrow8x-60-3x+15+4x-40=5x+10\)
\(\Leftrightarrow9x-35=5x+10\)
\(\Leftrightarrow9x-5x=10+35\)
\(\Leftrightarrow4x=45\)
\(\Leftrightarrow x=\dfrac{45}{4}=11,25\)
b) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\left(6x+1\right)\)
\(\Leftrightarrow\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=4x+\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{31}{60}+x=4x+\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{31}{60}-\dfrac{2}{3}=4x-x\)
\(\Leftrightarrow3x=\dfrac{1}{60}\)
\(\Leftrightarrow x=\dfrac{1}{180}\)
c) \(\dfrac{7}{3}-\left(2x-\dfrac{1}{3}\right)=\left(-2\dfrac{1}{6}+1\dfrac{1}{2}\right):0,25\)
\(\Leftrightarrow\dfrac{7}{3}-2x+\dfrac{1}{3}=-1\dfrac{2}{3}:\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{8}{3}-2x=\dfrac{-5}{3}.4\)
\(\Leftrightarrow\dfrac{8}{3}-2x=\dfrac{-20}{3}\)
\(\Leftrightarrow2x=\dfrac{8}{3}+\dfrac{20}{3}\)
\(\Leftrightarrow2x=\dfrac{28}{3}\)
\(\Leftrightarrow x=4\dfrac{2}{3}\)
d) \(0,75+\dfrac{5}{9}:x=5\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{3}{4}+\dfrac{5}{9}:x=\dfrac{11}{2}\)
\(\Leftrightarrow\dfrac{5}{9}:x=\dfrac{11}{2}-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{5}{9}:x=\dfrac{19}{4}\)
\(\Leftrightarrow x=\dfrac{5}{9}:\dfrac{19}{4}\)
\(\Leftrightarrow x=\dfrac{20}{171}\)

1)
a.\(\dfrac{1}{5}+x=\dfrac{13}{50}\)
\(\Leftrightarrow x=\dfrac{13}{50}-\dfrac{1}{5}=\dfrac{13-10}{50}=\dfrac{3}{50}\)
b.\(\dfrac{1}{6}-x=\dfrac{5}{12}\)
\(\Leftrightarrow x=\dfrac{1}{6}-\dfrac{5}{12}=\dfrac{2-5}{12}=-\dfrac{3}{12}=-\dfrac{1}{4}\)
c.\(x\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Leftrightarrow x\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}.\left(-\dfrac{1}{2}\right)^2\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
d.\(x:\dfrac{7}{11}=\dfrac{9}{33}\)
\(\Leftrightarrow x=\dfrac{9}{33}.\dfrac{7}{11}=\dfrac{3}{11}.\dfrac{7}{11}=\dfrac{21}{121}\)
e.\(\dfrac{3}{5}.x=-\dfrac{21}{10}\)
\(\Leftrightarrow x=-\dfrac{21}{10}:\dfrac{3}{5}=-\dfrac{21}{10}.\dfrac{5}{3}=-\dfrac{7}{2}\)

a/ \(x+\dfrac{3}{5}=\dfrac{4}{7}\)
\(x=\dfrac{4}{7}-\dfrac{3}{5}\)
\(x=-\dfrac{1}{35}\)
Vậy ....
b/ \(x-\dfrac{5}{6}=\dfrac{1}{6}\)
\(x=\dfrac{1}{6}+\dfrac{5}{6}\)
\(x=1\)
Vậy ....
c/\(-\dfrac{5}{7}-x=\dfrac{-9}{10}\)
\(x=\dfrac{-5}{7}-\dfrac{-9}{10}\)
\(x=\dfrac{13}{70}\)
Vậy .....
d/ \(\dfrac{5}{7}-x=10\)
\(x=\dfrac{5}{7}-10\)
\(x=\dfrac{-65}{7}\)
Vậy ...
e/ \(x:\left(\dfrac{1}{9}-\dfrac{2}{5}\right)=\dfrac{-1}{2}\)
\(x:\dfrac{-13}{45}=\dfrac{-1}{2}\)
\(x=\dfrac{-1}{2}.\dfrac{-13}{45}\)
\(x=\dfrac{13}{90}\)
Vậy ....
f/ \(\left(\dfrac{-3}{5}+1,25\right)x=\dfrac{1}{3}\)
\(0,65.x=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}:0,65\)
\(x=\dfrac{20}{39}\)
Vậy ....
g/ \(\dfrac{1}{3}x+\left(\dfrac{2}{3}-\dfrac{4}{9}\right)=\dfrac{-3}{4}\)
\(\dfrac{1}{3}x+\dfrac{2}{9}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{1}{3}x=\dfrac{-35}{36}\)
\(\Leftrightarrow x=\dfrac{-35}{12}\)
Vậy ...

a: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+2^x\cdot2=2^{10}\left(2^2+1\right)\)
\(\Leftrightarrow2^x=2^{10}\cdot5:\dfrac{5}{2}=2^{10}\cdot5\cdot\dfrac{2}{5}=2^{11}\)
=>x=11
b: \(\Leftrightarrow3^x\cdot\dfrac{1}{3}+3^x\cdot9=3^{13}\cdot28\)
\(\Leftrightarrow3^x=3^{13}\cdot28:\dfrac{28}{3}=3^{14}\)
hay x=14
\(\dfrac{x-4}{10}+\dfrac{x-3}{11}=\dfrac{x-2}{12}+\dfrac{x-1}{13}\)
\(\Rightarrow\dfrac{x-4}{10}+\dfrac{x-3}{11}-\dfrac{x-2}{12}-\dfrac{x-1}{13}=0\)
\(\Rightarrow\left(\dfrac{x-4}{10}-1\right)+\left(\dfrac{x-3}{11}-1\right)-\left(\dfrac{x-2}{12}-1\right)-\left(\dfrac{x-1}{13}-1\right)=0\)
\(\Rightarrow\dfrac{x-14}{10}+\dfrac{x-14}{11}-\dfrac{x-14}{12}-\dfrac{x-14}{13}=0\)
\(\Rightarrow\left(x-14\right)\left(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\right)=0\)
\(\Rightarrow x-14=0\) (Mà \(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\ne0)\)
\(\Rightarrow x=0+14\\ \Rightarrow x=14\)
Vậy: \(x=14\)