Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}=\dfrac{x+1}{5}+\dfrac{x+1}{6}\)
\(\Leftrightarrow\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}-\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)
Mà \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\ne0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy ..
\(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}=\dfrac{x+1}{5}+\dfrac{x+1}{6}\)
=> \(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}-\dfrac{x+1}{5}-\dfrac{x+1}{6}\)= 0
(x + 1).(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\)) = 0
Ta thấy \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\) > 0
=> x + 1 = 0
x = 0 - 1
x = -1
>> Mình không chép lại đề bài nhé ! <<
Cách 1 :
\(A=\left(\dfrac{36-4+3}{6}\right)-\left(\dfrac{30+10-9}{6}\right)-\left(\dfrac{18-14+15}{6}\right)=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}=-\dfrac{15}{6}=-\dfrac{5}{2}\)
Cách 2 :
\(A=6-\dfrac{2}{3}+\dfrac{1}{2}-5+\dfrac{5}{3}-\dfrac{3}{2}-3-\dfrac{7}{3}+\dfrac{5}{2}\)
\(A=\left(6-5-3\right)-\left(\dfrac{2}{3}+\dfrac{5}{3}-\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)
\(A=-2-0-\dfrac{1}{2}=-\dfrac{5}{2}\)
Cách 1 :
\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)
\(=\left(\dfrac{36}{6}-\dfrac{4}{6}+\dfrac{3}{6}\right)-\left(\dfrac{30}{6}+\dfrac{10}{6}-\dfrac{9}{6}\right)-\left(\dfrac{18}{6}-\dfrac{14}{6}+\dfrac{15}{6}\right)\)
\(=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}\)
\(=-\dfrac{5}{2}\)
Cách 2 :
\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)
\(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)
\(=\left(6-5-3\right)+\left(\dfrac{-2}{3}+\dfrac{-5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{-5}{2}\right)\)
\(=\left(-2\right)+0+\dfrac{-1}{2}\)
\(=\dfrac{-5}{2}\)
a) \(\dfrac{12}{25}+\dfrac{5}{13}+\dfrac{13}{25}-\dfrac{18}{13}+\dfrac{3}{5}\)
\(=\left(\dfrac{12}{25}+\dfrac{13}{25}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)+\dfrac{3}{5}\)
\(=1+\left(-1\right)+\dfrac{3}{5}\)
\(=0+\dfrac{3}{5}\)
\(=\dfrac{3}{5}\)
b) \(\dfrac{2}{5}:\left(\dfrac{5}{2}-\dfrac{3}{4}\right)\)
\(=\dfrac{2}{3}:\dfrac{3}{4}\)
\(=\dfrac{8}{21}\)
tích mình nha
a) \(\dfrac{12}{25}+\dfrac{5}{13}+\dfrac{13}{25}-\dfrac{18}{13}+\dfrac{3}{5}\)
= \(\left(\dfrac{12}{25}+\dfrac{13}{25}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)+\dfrac{3}{5}\)
= 1 + (-1) + \(\dfrac{3}{5}\)
= 0 + \(\dfrac{3}{5}\) = \(\dfrac{3}{5}\)
b) \(\dfrac{2}{3}:\left(\dfrac{5}{2}-\dfrac{3}{4}\right)\)
=\(\dfrac{2}{3}:\left(\dfrac{10}{4}-\dfrac{3}{4}\right)\)
=\(\dfrac{2}{3}:\dfrac{7}{4}\)
=\(\dfrac{2}{3}.\dfrac{4}{7}\)
=\(\dfrac{8}{21}\)
Chúc bạn học tốt!!!
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\left(1\right)\\ \Leftrightarrow1+\dfrac{a}{b}+\dfrac{b}{a}+1-4\ge0\\ \Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}-2\ge0\left(2\right)\)
Áp dụng t/c \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) nên (2) luôn đúng.Do đó:(1) đúng
Vậy...(đpcm)
1. đề bạn ghi rõ lại giúp mình đc ko r mình giải lại cho
2. Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x^2}{2.3^2}=\dfrac{y^2}{5^2}=\dfrac{2x^2-y^2}{18-25}=\dfrac{-28}{-7}=4\)
\(\dfrac{x}{3}=4\Rightarrow x=12\)
\(\dfrac{y}{5}=4\Rightarrow y=20\)
Vậy x=12 và y=20
Giải:
a) \(-1313x^2y.2xy^3\)
\(=\left(-1313.2\right)\left(x^2.x\right)\left(y.y^3\right)\)
\(=-2626x^3y^4\)
Bậc của đơn thức là: \(3+4=7\)
b) \(1414x^3y.\left(-2x^3y^5\right)\)
\(=\left[1414.\left(-2\right)\right]\left(x^3.x^3\right)\left(y.y^5\right)\)
\(=-2828x^6y^6\)
Bậc của đơn thức là: \(6+6=12\).
Chúc bạn học tốt!!!
a) -x2y. 2xy3 = -2x3y4. Đơn thức có bậc là 7
b) x3y. (-2x3y5) = -2x6y6. Đơn thức có bậc là 12
x,y tỉ lệ thuận với \(\dfrac{3}{4}\) và \(\dfrac{4}{3}\)
\(\Rightarrow\dfrac{x}{\dfrac{3}{4}}=\dfrac{y}{\dfrac{4}{3}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có :
\(\dfrac{x}{\dfrac{3}{4}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{x+y}{\dfrac{3}{4}+\dfrac{4}{3}}=-\dfrac{50}{\dfrac{25}{12}}=-24\)
\(\dfrac{x}{\dfrac{3}{4}}=-24\Rightarrow x=-18\)
\(\dfrac{y}{\dfrac{4}{3}}=-24\Rightarrow y=-32\)
Vì x tỉ lệ thuận với \(\dfrac{3}{4}\)\(\Rightarrow x=\dfrac{3}{4}.k\)
Vì y tỉ lệ thuận với \(\dfrac{4}{3}\Rightarrow y=\dfrac{4}{3}.k\)
\(\Rightarrow x+y=\dfrac{3}{4}.k+\dfrac{4}{3}.k\)
Mà x+y=50
\(\Rightarrow\dfrac{3}{4}.k +\dfrac{4}{3}.k=-50\)
\(\Rightarrow\left(\dfrac{3}{4}+\dfrac{4}{3}\right).k=-50\)
\(\Rightarrow\dfrac{25}{12}.k=-50\)
\(\Rightarrow k=-50:\dfrac{25}{12}\)
\(\Rightarrow k=-24\)
\(\Rightarrow x=\dfrac{3}{4}.\left(-24\right)=-18\)
Tick mk nha!!!
\(y=\dfrac{4}{3}.\left(-24\right)=-32\)
Vậy \(x=-18,y=-32\)
Với mọi x thuộc R Có (x^2-9)^2 \(\ge\) 0
[y-4] \(\ge\) 0
Suy ra (x^2-9)^2+[y-4] - 1 \(\ge\) -1
Xét A=-1 khi và chỉ khi (x^2-9)^2 và [y-4] đều bằng 0
Tự tính ra
Xin lỗi nhưng vì không biết nên mình phải dùng [ ] thay cho GTTĐ nhé
Xin lỗi nhiều tại mình o tìm được kí hiệu đó
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-3}=\dfrac{y}{-7}=\dfrac{2x-2y}{2\cdot\left(-3\right)-2\cdot\left(-7\right)}=\dfrac{44}{8}=\dfrac{11}{2}\)
Do đó: \(\left(x,y\right)=\left(-\dfrac{33}{2};-\dfrac{77}{2}\right)\)
thank you very much