Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(\dfrac{x}{3}=\dfrac{7}{y}\)⇒ x.y = 7.3
⇒ x.y = 21
⇒ Ta có cùng nhiều kết quả:
x | 1 | 21 | 3 | 7 |
y | 21 | 1 | 7 | 3 |
b)\(\dfrac{x}{2}=\dfrac{y}{5}\) và x+y = 35
Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)⇒\(\dfrac{x+y}{2+5}=\dfrac{35}{7}\) = 5
⇒ \(\dfrac{x}{2}=\) 5⇒ x=10
⇒ y= 35 - 10 = 25
Vì x;y là số nguyên nên cũng nhận được giá trị âm bạn nhé ( ở câu a)

a) \(\dfrac{x}{2}=-\dfrac{6}{3}=-2\Rightarrow x=2.\left(-2\right)=-4\)
b) \(\dfrac{2}{x}=\dfrac{y}{-3}\Leftrightarrow y=-\dfrac{6}{x}\) y thuộc Z => x thuộc {+-6;+-3;+-2;+-1}
(x;y) =(-6;1);(-3;2); (-2;3);(-1;6) ; (6;-1);(3-2);(2;-3);(1;-6)

bài 3:
a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
A/D tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27

Bài 1:
a: =>3x-3-4=0
=>3x=7
hay x=7/3
b: =>2x-2+3x+6=0
=>5x+4=0
hay x=-4/5
c: =>\(4x^2+4x-1=0\)
hay \(x\in\left\{\dfrac{-1+\sqrt{2}}{2};\dfrac{-1-\sqrt{2}}{2}\right\}\)
d: \(\Leftrightarrow3x-3+2x-4+6=0\)
=>5x+1=0
hay x=-1/5

a, \(\dfrac{3}{x}+\dfrac{y}{3}=\dfrac{5}{6}\)
ta có: \(\dfrac{3}{x}+\dfrac{y}{3}=\dfrac{5}{6}=>\dfrac{3}{x}=\dfrac{5}{6}-\dfrac{y}{3}=\dfrac{5-2y}{6}\)
=>\(\dfrac{3}{x}=\dfrac{5-2y}{6}=>x.\left(5-2y\right)=3.6=18\)
=> x và 5-2y thuộc Ư của 18={1,-1,2,-2,3,-3,6,-6}
vì 5-2y là số lẻ=> 5-2y= +-1 hoặc 5-2y=+-3
xét bảng
5-2y | 1 | -1 | 3 | -3 |
y | 2 | 3 | 1 | 4 |
x | 18 | -18 | 6 | -6 |
vậy giá trị x,y cần tìm là: {x=18.y=2}
{x=-18.y=3}
{x=6, y=1}Ư
{x=-6,y=4}

Bài 2: a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Leftrightarrow7x-21=5x+25\)
\(\Leftrightarrow7x-5x=21+25\)
\(\Leftrightarrow2x=46\)
\(\Rightarrow x=46:2=23\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)=63\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
\(\Rightarrow x^2=\left(\pm8\right)^2\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
2)a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow7\left(x-3\right)=5\left(x+5\right)\)
\(7x-21=5x+25\)
\(7x-5x+25=21\)
\(2x+25=21\)
\(2x=-4\Rightarrow x=-2\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(7.9=\left(x+1\right)\left(x-1\right)\)
\(63=x\left(x-1\right)+1\left(x-1\right)\)
\(63=x^2-x+x-1\)
\(x^2=63+1=64\)
\(x=\left\{\pm8\right\}\)
c) \(\dfrac{x+4}{20}=\dfrac{2}{x+4}\)
\(\Leftrightarrow\left(x+4\right)\left(x+4\right)=2.20=40\)
\(x\left(x+4\right)+4\left(x+4\right)=40\)
\(x^2+4x+4x+16=40\)
\(x^2+8x=40-16=24\)
\(x\left(x+8\right)=24\)
\(x\in\left\{\varnothing\right\}\)
d) \(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=\left(x-1\right)\left(x+3\right)\)
\(x\left(x-2\right)+2\left(x-2\right)=x\left(x+3\right)-1\left(x+3\right)\)
\(x^2-2x+2x-4=x^2+3x-x-3\)
\(\)\(x^2-4=x^2+2x-3\)
\(\Leftrightarrow x^2-x^2-2x+3=4\)
\(-2x+3=4\)
\(-2x=1\)
\(x=-\dfrac{1}{2}\)

\(\dfrac{-2}{3}\cdot\left(x-\dfrac{1}{4}\right)=\dfrac{1}{3}\left(2x-1\right)\)
\(-\dfrac{2}{3}x+\dfrac{1}{6}=\dfrac{2}{3}x-\dfrac{1}{3}\\ -\dfrac{2}{3}x+\dfrac{1}{6}-\dfrac{2}{3}x+\dfrac{1}{3}=0\)
\(-\dfrac{4}{3}x+\dfrac{1}{2}=0\\ -\dfrac{4}{3}x=-\dfrac{1}{2}\\ x=\dfrac{3}{8}\)
\(\dfrac{1}{5}2^x+\dfrac{1}{3}2^{x+1}=\dfrac{1}{5}2^7+\dfrac{1}{3}2^8\)
\(\dfrac{1}{5}2^x+\dfrac{1}{3}2^x\cdot2=\dfrac{1}{5}2^7+\dfrac{1}{3}2^7\cdot2\)
\(2^x\left(\dfrac{1}{5}+\dfrac{1}{3}\cdot2\right)=2^7\left(\dfrac{1}{5}+\dfrac{1}{3}\cdot2\right)\)
\(2^x=2^7\\ x=7\)
\(\dfrac{x-1}{3}=\dfrac{5}{y+2}\)
=>(x-1)(y+2)=3*5=15
=>\(\left(x-1;y+2\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(2;13\right);\left(16;-1\right);\left(0;-17\right);\left(-14;-3\right);\left(4;3\right);\left(6;1\right);\left(-2;-7\right);\left(-4;-5\right)\right\}\)
\(\dfrac{x-1}{3}\) = \(\dfrac{5}{y+2}\) (\(x;y\) \(\in\) Z)
\(x\) = \(\dfrac{5}{y+2}\) x 3 + 1
\(x\) = \(\dfrac{15}{y+2}\) + 1
\(x\in\)Z ⇔ y + 2 \(\in\) Ư(15) = {-15; - 5; -3; -1; 1; 3; 5; 15}
y \(\in\) {-17; - 7; -5; -3; -1; 1; 3; 13}
Lập bảng ta có:
Theo bảng trên ta có:
các cặp số nguyên \(x;y\) thỏa mãn đề bài là:
(\(x\);y) = (0; -17); (-2; -7); (-4; -5); (-14; - 3); (16; -1); (6; 1); (4; 3); (2; 13)
Vậy: (\(x;y\)) = (0; -17); (-2; -7); (-4; -5); (-14; - 3); (16; -1); (6; 1); (4; 3); (2; 13)