\(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

a, \(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\) ĐKXĐ: t\(\ne\)2,t\(\ne\)-3

\(\Leftrightarrow\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{\left(t+3\right)\left(t-2\right)}\)

\(\Rightarrow\left(t+3\right)\left(t+3\right)+\left(t-2\right)\left(t-2\right)=5t+15\)

\(\Leftrightarrow t^2+6t+9+t^2-4t+4-5t-15=0\)

\(\Leftrightarrow-3t-2=0\)

\(\Leftrightarrow-3t=2\)

\(\Leftrightarrow t=\dfrac{-2}{3}\) (tđk)

\(\Rightarrow S=\left\{\dfrac{-2}{3}\right\}\)

b, \(\left(2x+3\right)\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)ĐKXĐ: x\(\ne\)\(\dfrac{2}{7}\)

\(\Leftrightarrow\) \(\left(2x+3\right)\left(\dfrac{3x+8}{2-7x}+1\right)-\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)=0\)

\(\Rightarrow\left(\dfrac{3x+8}{2-7x}+1\right)\left(2x+3-x+5\right)=0\)

\(\Leftrightarrow\) \(\Rightarrow\left(\dfrac{3x+8}{2-7x}+1\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3x+8}{2-7x}+1=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x+8+2-7x=0\\x=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-4x+10=0\\x=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-8\end{matrix}\right.\)

\(\Rightarrow S=\left\{\dfrac{5}{2};-8\right\}\)

9 tháng 3 2018

ĐKXĐ: x khác 2 và x khác -3

\(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\)

\(\Leftrightarrow\dfrac{\left(t+3\right)\left(t+3\right)}{\left(t+3\right)\left(t-2\right)}+\dfrac{\left(t-2\right)\left(t-2\right)}{\left(t+3\right)\left(t-2\right)}=\dfrac{5t+15}{t^2+t-6}\)

\(\Rightarrow t^2+6t+9+t^2-4=5t+15\)

\(\Leftrightarrow2t^2+t-10=0\)

\(\Leftrightarrow2t^2-4t+5t-10=0\)

\(\Leftrightarrow2t\left(t-2\right)+5\left(t-2\right)=0\)

\(\Leftrightarrow\left(2t+5\right)\left(t-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\left(loại\right)\\t=\dfrac{-5}{2}\end{matrix}\right.\)

Vậy..................

b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)

d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)

\(\Leftrightarrow x^2+14x+68=0\)

hay \(x\in\varnothing\)

22 tháng 4 2017

Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

18 tháng 11 2017

\(1.\text{ }\text{ }\text{ }\dfrac{\left(x^2+2\right)^2-4x^2}{y\left(x^2+2\right)-2xy-\left(x-1\right)^2-1}\\ =\dfrac{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}{x^2y+2y-2xy-x^2+2x-1-1}\\ =\dfrac{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}{\left(x^2y-x^2\right)-\left(2xy-2x\right)+\left(2y-2\right)}\\ =\dfrac{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}{x^2\left(y-1\right)-2x\left(y-1\right)+2\left(y-1\right)}\\ =\dfrac{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}{\left(x^2-2x+2\right)\left(y-1\right)}\\ =\dfrac{x^2+2x+2}{y-1}\)

\(2.\text{ }\text{ }\text{ }\text{ }\dfrac{x^2+5x+6}{x^2+3x+2}\\ =\dfrac{x^2+3x+2x+6}{x^2+2x+x+2}\\ =\dfrac{\left(x^2+3x\right)+\left(2x+6\right)}{\left(x^2+2x\right)+\left(x+2\right)}\\ =\dfrac{x\left(x+3\right)+2\left(x+3\right)}{x\left(x+2\right)+\left(x+2\right)}\\ =\dfrac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)\left(x+1\right)}\\ =\dfrac{x+3}{x+1}\)

\(3.\text{ }\text{ }\text{ }\dfrac{x^2+y^2-z^2-2zt+2xy-t^2}{x^2-y^2+z^2-2yt+2xz-t^2}\text{ ( Chữa đề ) }\\ =\dfrac{\left(x^2+2xy+y^2\right)-\left(z^2+2zt+t^2\right)}{\left(x^2+2xz+z^2\right)-\left(y^2+2yt+t^2\right)}\\ =\dfrac{\left(x+y\right)^2-\left(z+t\right)^2}{\left(x+z\right)^2-\left(y+t\right)^2}\\ =\dfrac{\left(x+y+z+t\right)\left(x+y-z-t\right)}{\left(x+z+y+t\right)\left(x+z-y-t\right)}\\ =\dfrac{x+y-z-t}{x+z-y-t}\)

\(4.\text{ }\text{ }\text{ }\dfrac{\left(n+1\right)!}{\left(n+1\right)!+\left(n+2\right)!}=\dfrac{\left(n+1\right)!}{\left(n+1\right)!\left(1+n+2\right)}=\dfrac{1}{n+3}\)

\(5.\text{ }\text{ }\text{ }\dfrac{x^2+5x+4}{x^2-1}\\ =\dfrac{x^2+x+4x+4}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{\left(x^2+x\right)+\left(4x+4\right)}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{x\left(x+1\right)+4\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{\left(x+1\right)\left(x+4\right)}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{x+4}{x-1}\)

\(6.\text{ }\text{ }\text{ }\dfrac{x^2-3x}{2x^2-7x+3}\\ =\dfrac{x\left(x-3\right)}{2x^2-6x-x+3}\\ =\dfrac{x\left(x-3\right)}{\left(2x^2-6x\right)-\left(x-3\right)}\\ =\dfrac{x\left(x-3\right)}{2x\left(x-3\right)-\left(x-3\right)}\\ =\dfrac{x\left(x-3\right)}{\left(2x-1\right)\left(x-3\right)}\\ =\dfrac{x}{2x-1}\)

7 tháng 11 2018

1) \(\dfrac{A\left(x-5\right)}{\left(x+1\right)\left(x-5\right)}=\dfrac{3x\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}\)

\(\Rightarrow A=3x\)

2) \(\dfrac{\left(x+3\right)\left(x-2\right)}{A\left(x-3\right)}=\dfrac{\left(5x-1\right)\left(x-2\right)}{\left(5x-1\right)\left(x^2+3\right)}\)

\(\Leftrightarrow\dfrac{\left(x+3\right)}{A\left(x-3\right)}=\dfrac{1}{\left(x^2+3\right)}\)

\(\Rightarrow A=\dfrac{\left(x^2+3\right)\left(x+3\right)}{x-3}\)

3) \(\dfrac{\left(x-5\right)\left(x+5\right)}{\left(x+5\right)\left(2x-3\right)}=\dfrac{\left(x-5\right)A}{\left(2x-3\right)\left(x+2\right)}\)

\(\Leftrightarrow1=\dfrac{A}{\left(x+2\right)}\)

\(\Leftrightarrow A=x+2\)

19 tháng 12 2018

Bài 1:

a) \(\dfrac{3x^2-5}{x^2-5x}+\dfrac{5-15x}{5x-25}\)

\(=\dfrac{3x^2-5}{x\left(x-5\right)}+\dfrac{5\left(1-3x\right)}{5\left(x-5\right)}\)

\(=\dfrac{3x^2-5}{x\left(x-5\right)}+\dfrac{1-3x}{x-5}\)

\(=\dfrac{3x^2-5}{x\left(x-5\right)}+\dfrac{x\left(1-3x\right)}{x\left(x-5\right)}\)

\(=\dfrac{3x^2-5+x\left(1-3x\right)}{x\left(x-5\right)}\)

\(=\dfrac{3x^2-5+x-3x^2}{x\left(x-5\right)}\)

\(=\dfrac{-5+x}{x\left(x-5\right)}\)

\(=\dfrac{x-5}{x\left(x-5\right)}\)

\(=\dfrac{1}{x}\)

b) \(\dfrac{4+x^3}{x-3}-\dfrac{2x+2x^2}{x-3}+\dfrac{2x-13}{x-3}\)

\(=\dfrac{\left(4+x^3\right)-\left(2x+2x^2\right)+\left(2x-13\right)}{x-3}\)

\(=\dfrac{4+x^3-2x-2x^2+2x-13}{x-3}\)

\(=\dfrac{x^3-2x^2-9}{x-3}\)

\(=\dfrac{x^3-3x^2+x^2-9}{x-3}\)

\(=\dfrac{x^2\left(x-3\right)+\left(x-3\right)\left(x+3\right)}{x-3}\)

\(=\dfrac{\left(x-3\right)\left(x^2+x+3\right)}{x-3}\)

\(=x^2+x+3\)

c) \(\dfrac{2}{x-5}+\dfrac{x-25}{\left(x+5\right)\left(x-5\right)}\)

\(=\dfrac{2\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}+\dfrac{x-25}{\left(x+5\right)\left(x-5\right)}\)

\(=\dfrac{2\left(x+5\right)+x-25}{\left(x+5\right)\left(x-5\right)}\)

\(=\dfrac{2x+10+x-25}{\left(x+5\right)\left(x-5\right)}\)

\(=\dfrac{3x-15}{\left(x+5\right)\left(x-5\right)}\)

\(=\dfrac{3\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}\)

\(=\dfrac{3}{x+5}\)

d) Đề sai?

Bài 2:

\(A=2\left(x+1\right)+\left(3x+2\right)\left(3x-2\right)-9x^2\)

\(A=2x+2+9x^2-4-9x^2\)

\(A=2x-2\)

\(A=2\left(x-1\right)\)

Thay x = 15 vào A ta được:

\(A=2\left(15-1\right)\)

\(A=2.14=28\)

9 tháng 2 2018

Giải:

a) \(8\left(3x-2\right)-13x=5\left(12-3x\right)+7x\)

\(\Leftrightarrow24x-16-13x=60-15x+7x\)

\(\Leftrightarrow24x-13x+15x-7x=60+16\)

\(\Leftrightarrow19x=76\)

\(\Leftrightarrow x=\dfrac{76}{19}=4\)

Vậy ...

b) \(\dfrac{5x}{x+2}-\dfrac{3}{x-2}+\dfrac{3x^2+6}{\left(x-2\right)\left(x+2\right)}=0\) (1)

ĐKXĐ: \(x\ne\pm2\)

\(\left(1\right)\Leftrightarrow\dfrac{5x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{3x^2+6}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow5x\left(x-2\right)-3\left(x+2\right)+3x^2+6=0\)

\(\Leftrightarrow5x^2-10x-3x-6+3x^2+6=0\)

\(\Leftrightarrow8x^2-13x=0\)

\(\Leftrightarrow x\left(8x-13\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\8x-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=\dfrac{13}{8}\left(TM\right)\end{matrix}\right.\)

Vậy ...

c) \(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\) (2)

ĐKXĐ: \(x\ne-1;x\ne3\)

\(\left(2\right)\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{4x}{2\left(x+1\right)\left(x-3\right)}\)

\(\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)=4x\)

\(\Leftrightarrow x\left(x+1+x-3\right)=4x\)

\(\Leftrightarrow x\left(2x-2\right)=4x\)

\(\Leftrightarrow2x-2=4\)

\(\Leftrightarrow x=3\)

Vậy ...

9 tháng 8 2018

giups mình với các bạn,thứ 7 này mink phải nộp rồi

9 tháng 8 2018

Hướng dẫn thôi nha bạn.

Giải:

Bài 1.

- Nhân đơn thức với đa thức: Nhân đơn thức với từng hạng tử của đa thức. (Rút gọn các hạng tử đồng dạng)

VD: Câu a)

\(2x\left(x^2-7x-3\right)\)

\(=2x.x^2-2x.7x-2x.3\)

\(=2x^3-14x^2-6x\)

- Nhân đa thức với đa thức: Nhân từng hạng tử của đa thức này với từng hạng tử của đa thức kia. (Rút gọn các hạng tử đồng dạng)

VD: Câu e)

\(\left(x^2-2x+3\right)\left(x-4\right)\)

\(=x^2.x-x^2.4-2x.x+2x.4+3.x-3.4\)

\(=x^3-4x^2-2x^2+8x+3x-12\)

\(=x^3-6x^2+11x-12\)

Bài 2.

Áp dụng hằng đẳng thức (số 1 và số 2)

VD: \(892^2+892.216+108^2\)

\(=892^2+2.892.108+108^2\)

\(=\left(892+108\right)^2\)

\(=1000^2=1000000\)

Bài 3: Chủ yếu áp dụng hằng đẳng thức và phương pháp đặt nhân tử.

VD: Câu a)

\(7x^2-28=0\)

\(\Leftrightarrow7\left(x^2-4\right)=0\)

\(\Leftrightarrow x^2-4=0\left(7\ne0\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)

Bài 4: Áp dụng hằng đẳng thức

\(M=\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54-x\right)\)

\(\Leftrightarrow M=x^3+27-\left(x^3+54-x\right)\)

\(\Leftrightarrow M=x^3+27-x^3-54+x\)

\(\Leftrightarrow M=-27+x\)

Thay \(x=27\)

\(\Leftrightarrow M=-27+27=0\)

Vậy ...