Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}=\left(2\sqrt{7}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+14\sqrt{2}=14-14\sqrt{2}+7+14\sqrt{2}=21\)
b. \(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}-\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}=\sqrt{5}-\dfrac{\sqrt{5}}{2}=\dfrac{2\sqrt{5}-\sqrt{5}}{2}=\dfrac{\sqrt{5}}{2}\)
c. \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+2\sqrt{7}}=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\dfrac{\sqrt{2}}{2}\)
Mấy bài này rất dài , đăng từ từ thôi nhé bạn .
\(1.\dfrac{\sqrt{30}-\sqrt{2}}{\sqrt{8}-\sqrt{15}}-\sqrt{8-\sqrt{49+8\sqrt{3}}}=\dfrac{\sqrt{60}-\sqrt{4}}{\sqrt{16-2\sqrt{15}}}-\sqrt{8-\sqrt{48+2.4\sqrt{3}+1}}=\dfrac{2\left(\sqrt{15}-1\right)}{\sqrt{\left(\sqrt{15}-1\right)^2}}-\sqrt{8-|4\sqrt{3}+1|}=2-\sqrt{4-2.2\sqrt{3}+3}=2-|2-\sqrt{3}|=\sqrt{3}\)
\(2.\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\dfrac{2\sqrt{2}+\sqrt{6}}{\sqrt{4}+\sqrt{4+2\sqrt{3}}}+\dfrac{2\sqrt{2}-\sqrt{6}}{\sqrt{4}-\sqrt{4-2\sqrt{3}}}=\dfrac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{2\sqrt{2}+\sqrt{6}}{2+|\sqrt{3}+1|}+\dfrac{2\sqrt{2}-\sqrt{6}}{2-|\sqrt{3}-1|}=\dfrac{2\sqrt{2}-\sqrt{6}}{3-\sqrt{3}}+\dfrac{2\sqrt{2}+\sqrt{6}}{3+\sqrt{3}}=\dfrac{12\sqrt{2}-2\sqrt{18}}{9-3}=\dfrac{12\sqrt{2}-6\sqrt{2}}{6}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)
\(3.\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{\sqrt{2}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{2}{4+\sqrt{5+2\sqrt{5}+1}}+\dfrac{2}{4-\sqrt{5-2\sqrt{5}+1}}=\dfrac{2}{4+|\sqrt{5}+1|}+\dfrac{2}{4-|\sqrt{5}-1|}=\dfrac{2}{\sqrt{5}+5}+\dfrac{2}{5-\sqrt{5}}=\dfrac{10-2\sqrt{5}+10+2\sqrt{5}}{20}=\dfrac{20}{20}=1\)
b: \(=\dfrac{\sqrt{5}+1}{\sqrt{5}-1}+\dfrac{\sqrt{5}-1}{\sqrt{5}+1}\)
\(=\dfrac{6+2\sqrt{5}+6-2\sqrt{5}}{4}=\dfrac{12}{4}=3\)
c: \(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)
\(=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\)
e: \(=\dfrac{2\sqrt{3+\sqrt{5-2\sqrt{3}-1}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{\sqrt{2}\cdot\sqrt{3+\sqrt{3}-1}}{\sqrt{3}-1}=\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}-1}=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\)
\(=\dfrac{4-2\sqrt{3}}{2}=2-\sqrt{3}\)
a: \(=\dfrac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\dfrac{3\sqrt{5}+5-3-\sqrt{5}}{2\left(\sqrt{5}+1\right)}=\dfrac{2\sqrt{5}+2}{2\left(\sqrt{5}+1\right)}=1\)
b: \(=\sqrt{\sqrt{3}}\left(2\sqrt{2}-2\cdot5\sqrt{2}+4\cdot8\sqrt{2}\right)\)
\(=\sqrt{\sqrt{3}}\cdot24\sqrt{2}\)
d: \(=\dfrac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
b,\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\) \(=\sqrt{8\sqrt{3}}-2\sqrt{50\sqrt{3}}+4\sqrt{8\sqrt{3}}\)
\(=2\sqrt{2\sqrt{3}}-10\sqrt{2\sqrt{3}}+8\sqrt{2\sqrt{3}}\)
\(=0\)
d,\(A=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
\(\sqrt{2}A=\sqrt{2}(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}})\)
\(\sqrt2A=\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)
\(\sqrt2A=\sqrt{(\sqrt5-1)^2}\) \(+\sqrt{(\sqrt5+1)^2}\) \(=\sqrt5-1 +\sqrt5+1=2\sqrt5\)
\(\Rightarrow A=\dfrac{2\sqrt5}{\sqrt2}\) \(=\sqrt{10}\)
a. \(\frac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{5}+1\right)}\)
\(=\frac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\frac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{3\sqrt{5}-3+5-\sqrt{5}}{2\left(\sqrt{5}+1\right)}\)
\(=\frac{2\sqrt{5}+2}{2\left(\sqrt{5}+1\right)}=\frac{2\left(\sqrt{5}+1\right)}{2\left(\sqrt{5}+1\right)}=1\)
1) \(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\)
\(=2\sqrt{5}-\sqrt{5^2.5}-\sqrt{4^2.5}+\sqrt{11^2.5}\)
\(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}\)
\(=4\sqrt{5}\)
2) \(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{15-\sqrt{6^2.6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{6}\right)^2-6\sqrt{6}+3^2}+\sqrt{\left(2\sqrt{6}\right)^2-12\sqrt{6}+3^2}\)
\(=\sqrt{\left(\sqrt{6}-3\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|\sqrt{6}-3\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\) ( vi \(\sqrt{6}-3< 0\))
\(=\sqrt{6}\)
5) \(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\)
\(=2\frac{4}{\sqrt{3}}-3.\frac{1}{3}-6\sqrt{\frac{2^2}{3.5^2}}\)
\(=\frac{8\sqrt{3}}{3}-1-6.\frac{2}{5}.\sqrt{\frac{1}{3}}\)
\(=8\frac{\sqrt{3}}{3}-1-\frac{12}{5}.\frac{\sqrt{3}}{3}\)
\(=\frac{28}{5}.\frac{\sqrt{3}}{3}-1\)
Báo cáo sai phạm
1) 2√5−√125−√80+√605
=2√5−√52.5−√42.5+√112.5
=2√5−5√5−4√5+11√5
=4√5
2) √15−√216+√33−12√6
=√15−√62.6+√33−12√6
=√15−6√6+√33−12√6
=√(√6)2−6√6+32+√(2√6)2−12√6+32
=√(√6−3)2+√(2√6−3)2
=|√6−3|+|2√6−3|
=3−√6+2√6−3 ( vi √6−3<0)
=√6
5) 2√163 −3√127 −6√475
=24√3 −3.13 −6√223.52
=8√33 −1−6.25 .√13
=8√33 −1−125 .√33
=285 .√33 −1
3: \(\sqrt{12-3\sqrt{7}}-\sqrt{12-3\sqrt{7}}=0\)
4: \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\)
\(=-2\sqrt{2}\)
6: \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
\(=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}\)
\(=-4\sqrt{3}\)
Bài 1: Ta có:
\(\frac{\sqrt{8-4\sqrt{3}}}{\sqrt{\sqrt{6}-\sqrt{2}}}\sqrt{\sqrt{6}+\sqrt{2}}=\frac{\sqrt{8-4\sqrt{3}}}{\sqrt{(\sqrt{6}-\sqrt{2})(\sqrt{6}+\sqrt{2})}}(\sqrt{6}+\sqrt{2})\)
\(=\frac{\sqrt{8-4\sqrt{3}}}{\sqrt{6-2}}(\sqrt{6}+\sqrt{2})\)
\(=\frac{\sqrt{6+2-2\sqrt{6.2}}}{2}(\sqrt{6}+\sqrt{2})\)
\(=\frac{\sqrt{(\sqrt{6}-\sqrt{2})^2}}{2}(\sqrt{6}+\sqrt{2})\)
\(=\frac{(\sqrt{6}-\sqrt{2})(\sqrt{6}+\sqrt{2})}{2}=\frac{6-2}{2}=2\)
Bài 2:
\(A=\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
\(\Rightarrow A^2=8+2\sqrt{10+2\sqrt{5}}+8-2\sqrt{10+2\sqrt{5}}+2\sqrt{(8+2\sqrt{10+2\sqrt{5}})(8-2\sqrt{10+2\sqrt{5}})}\)
\(=16+2\sqrt{8^2-(2\sqrt{10+2\sqrt{5}})^2}\)
\(=16+2\sqrt{64-4(10+2\sqrt{5})}\)
\(=16+2\sqrt{24-8\sqrt{5}}=16+2\sqrt{20+4-2\sqrt{20.4}}\)
\(=16+2\sqrt{(\sqrt{20}-\sqrt{4})^2}\)
\(=16+2(\sqrt{20}-2)=12+2\sqrt{20}=10+2+2\sqrt{10.2}=(\sqrt{10}+\sqrt{2})^2\)
\(\Rightarrow A=\sqrt{10}+\sqrt{2}\)