\(\frac{n^2+3n-21}{2-n}\)với n thuộc Z

a) Tính D biết \(^{n^...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2017

\(Dk...n\ne2\Leftrightarrow D=\frac{n^2+3n-21}{2-n}\)

n^2-3n=n(n-3)=0=> n=0 hoac n=3

a) \(D=\frac{-21}{2}\) hoạc \(\frac{6n-21}{2-n}=\frac{18-21}{2-3}=3\)

b)\(D=\frac{-11-5\left(2-n\right)-n\left(2-n\right)}{2-n}=\frac{11}{n-2}-n-5\)

D nguyên=> n-2={-11,-1,1,11}=> n={-9,1.3.13}

1) cho a,b,c là 3 số thực khác 0 thỏa mãn a+b-c/c=b+c-a/a=c+a-b/bhãy tính B= (1+b/a)(1+a/c)(1+c/b)2) CHo 2 số a, b thỏ mã a+3b= 0. tính giá trị M = \(\frac{2a+b}{a-b}=\frac{2a-b}{a+2b}\)3) Cmr b= \(2x^2-12xy+5y^2\) và c= \(-x-4y^2+12xy\) ko cùng nhận giá trị âm4) CHo p/s : d= \(\frac{n^2+3n-21}{2-n}\)a) tính d biết \(n^2-3n=0\)b) Tìm tất cả giá trị của n để d nguyên5)Tìm các số nguyên m thỏa mãn (5-m)(2m-1)>06)Tìm x,y...
Đọc tiếp

1) cho a,b,c là 3 số thực khác 0 thỏa mãn a+b-c/c=b+c-a/a=c+a-b/b
hãy tính B= (1+b/a)(1+a/c)(1+c/b)
2) CHo 2 số a, b thỏ mã a+3b= 0. tính giá trị M = \(\frac{2a+b}{a-b}=\frac{2a-b}{a+2b}\)
3) Cmr b= \(2x^2-12xy+5y^2\) và c= \(-x-4y^2+12xy\) ko cùng nhận giá trị âm
4) CHo p/s : d= \(\frac{n^2+3n-21}{2-n}\)
a) tính d biết \(n^2-3n=0\)
b) Tìm tất cả giá trị của n để d nguyên
5)Tìm các số nguyên m thỏa mãn (5-m)(2m-1)>0
6)Tìm x,y để \(\left(x^3-4x\right)^2+3x^2.|y-3|=0\)
7)Cho \(\frac{a}{b}=\frac{c}{d}\)cmr \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
8)\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}\) và 10x-3y-2z=-4
9)Cho tỷ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Cmr (a+2c)(b+d)=(a+c)(b+2d)
10)Cho x,y,z là cá số khác 0 và \(x^2=yz,y^2=xz,z^2=xy\). Cmr x=y=z
11)Tìm x biết \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)

0
25 tháng 2 2022

Giúp mình với các bạn

14 tháng 5 2017

Đề A đạt giá trị nguyên

=> 3n + 9 chia hết cho n - 4

3n - 12 + 12 + 9 chia hết cho n - 4

3.(n - 4) + 2c1 chia hết cho n - 4

=> 21 chia hết cho n - 4

=> n - 4 thuộc Ư(21) = {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}

Thay n - 4 vào các giá trị trên như

n - 4 = 1

n - 4 = -1

....... 

Ta tìm được các giá trị : 

n = {5 ; 3 ; 7 ; -1 ; 11 ; -3 ; 25 ; -17}

14 tháng 5 2017

a) Để A thuộc Z           (A nguyên)

=> 3n+9 chia hết cho n-4

hay 3n+9-12+12 chia hết cho n-4                   (-12+12=0)

      3n-12+9+12 chia hết cho n-4

     3n-12+21 chia hết cho n-4

     3(n-4)+21 chia hết cho n-4

Vì 3(n-4) luôn chia hết cho n-4 với mọi n thuộc Z=> 21 chia hết cho n-4

mà Ư(21)={21;1;7;3} nên ta có bảng:

n-421137
n25 (tm)5 (tm)7 (tm)11 (tm)

Vậy n={25;5;7;11} thì A nguyên.

b)

Để B thuộc Z           (B nguyên)

=> 6n+5 chia hết cho 2n-1

hay 6n+5-3+3 chia hết cho 2n-1                   (-3+3=0)

      6n-3+5+3 chia hết cho 2n-1

     6n-3+8 chia hết cho 2n-1

     3(2n-1)+8 chia hết cho 2n-1

Vì 3(2n-1) luôn chia hết cho 2n-1 với mọi n thuộc Z=> 8 chia hết cho 2n-1

mà Ư(8)={8;1;2;4} nên ta có bảng:

2n-18124
n4.5 (ktm)1 (tm)1.5 (ktm)2.5 (ktm)

Vậy, n=1 thì B nguyên.

10 tháng 8 2016

Để \(\frac{4n+3}{3n+1}\) thuộc Z thì 4n + 3 chia hết cho 3n + 1

\(\Rightarrow3\left(4n+3\right)⋮3n+1\)

\(\Rightarrow12n+9⋮3n+1\)

\(\Rightarrow\left(12n+4\right)+5⋮3n+1\)

\(\Rightarrow4\left(3n+1\right)+5⋮3n+1\)

\(\Rightarrow5⋮3n+1\)

\(\Rightarrow3n+1\in\left\{\pm1;\pm5\right\}\)

+) 3n + 1 = 1\(\Rightarrow n=0\) ( chọn )

+) \(3n+1=-1\Rightarrow n=\frac{-2}{3}\) ( loại )

+) \(3n+1=5\Rightarrow n=\frac{4}{3}\) ( loại )

+) \(3n+1=-5\Rightarrow n=-2\)

Vậy n = 0 hoặc n = -2

 

2 tháng 12 2017

có rảnh 

15 tháng 3 2018

\(-\frac{1}{2016}\\ -1;0;2;3\\1 \)

19 tháng 8 2016

Ta có : \(\frac{3x+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)

Để : \(\frac{3n+2}{n-1}\) nguyên thì \(\frac{5}{n-1}\) nguyên

Để : \(\frac{5}{n-1}\) thì \(n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

\(\Rightarrow n\in\left\{-4;0;2;6\right\}\)

10 tháng 7 2017

a) Ta có : \(\frac{2n-3}{n-1}=\frac{2n-2-1}{n-1}=\frac{2.\left(n-1\right)-1}{n-1}=2-\frac{1}{n-1}\)

Lập bảng ta có :

n-11-1
n20

b) Ta có : \(\frac{3n+1}{n-2}=\frac{3n-6+7}{n-2}=\frac{3.\left(n-2\right)+7}{n-2}=3+\frac{7}{n-2}\)

Lập bảng ta có :

n-21-17-7
n319-5
9 tháng 11 2017

a) Để  \(H=\frac{9}{\sqrt{n}-5}\)là 1 số nguyên

\(\Rightarrow9⋮\sqrt{n}-5\Rightarrow\sqrt{n}-5\inƯ\left(9\right)=\left(\pm1;\pm3;\pm9\right)\)

Ta có bảng sau:

\(\sqrt{n}-5\)1-13-39-9
\(\sqrt{n}\)648214-4
\(n\)2.4422.8281.413.74-2

Mà \(n\in Z\Rightarrow n\in\left(2;-2\right)\)

9 tháng 11 2017

con cau nua ban oi