Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề A đạt giá trị nguyên
=> 3n + 9 chia hết cho n - 4
3n - 12 + 12 + 9 chia hết cho n - 4
3.(n - 4) + 2c1 chia hết cho n - 4
=> 21 chia hết cho n - 4
=> n - 4 thuộc Ư(21) = {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}
Thay n - 4 vào các giá trị trên như
n - 4 = 1
n - 4 = -1
.......
Ta tìm được các giá trị :
n = {5 ; 3 ; 7 ; -1 ; 11 ; -3 ; 25 ; -17}
a) Để A thuộc Z (A nguyên)
=> 3n+9 chia hết cho n-4
hay 3n+9-12+12 chia hết cho n-4 (-12+12=0)
3n-12+9+12 chia hết cho n-4
3n-12+21 chia hết cho n-4
3(n-4)+21 chia hết cho n-4
Vì 3(n-4) luôn chia hết cho n-4 với mọi n thuộc Z=> 21 chia hết cho n-4
mà Ư(21)={21;1;7;3} nên ta có bảng:
n-4 | 21 | 1 | 3 | 7 |
n | 25 (tm) | 5 (tm) | 7 (tm) | 11 (tm) |
Vậy n={25;5;7;11} thì A nguyên.
b)
Để B thuộc Z (B nguyên)
=> 6n+5 chia hết cho 2n-1
hay 6n+5-3+3 chia hết cho 2n-1 (-3+3=0)
6n-3+5+3 chia hết cho 2n-1
6n-3+8 chia hết cho 2n-1
3(2n-1)+8 chia hết cho 2n-1
Vì 3(2n-1) luôn chia hết cho 2n-1 với mọi n thuộc Z=> 8 chia hết cho 2n-1
mà Ư(8)={8;1;2;4} nên ta có bảng:
2n-1 | 8 | 1 | 2 | 4 |
n | 4.5 (ktm) | 1 (tm) | 1.5 (ktm) | 2.5 (ktm) |
Vậy, n=1 thì B nguyên.
Để \(\frac{4n+3}{3n+1}\) thuộc Z thì 4n + 3 chia hết cho 3n + 1
\(\Rightarrow3\left(4n+3\right)⋮3n+1\)
\(\Rightarrow12n+9⋮3n+1\)
\(\Rightarrow\left(12n+4\right)+5⋮3n+1\)
\(\Rightarrow4\left(3n+1\right)+5⋮3n+1\)
\(\Rightarrow5⋮3n+1\)
\(\Rightarrow3n+1\in\left\{\pm1;\pm5\right\}\)
+) 3n + 1 = 1\(\Rightarrow n=0\) ( chọn )
+) \(3n+1=-1\Rightarrow n=\frac{-2}{3}\) ( loại )
+) \(3n+1=5\Rightarrow n=\frac{4}{3}\) ( loại )
+) \(3n+1=-5\Rightarrow n=-2\)
Vậy n = 0 hoặc n = -2
Ta có : \(\frac{3x+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
Để : \(\frac{3n+2}{n-1}\) nguyên thì \(\frac{5}{n-1}\) nguyên
Để : \(\frac{5}{n-1}\) thì \(n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n\in\left\{-4;0;2;6\right\}\)
a) Ta có : \(\frac{2n-3}{n-1}=\frac{2n-2-1}{n-1}=\frac{2.\left(n-1\right)-1}{n-1}=2-\frac{1}{n-1}\)
Lập bảng ta có :
n-1 | 1 | -1 |
n | 2 | 0 |
b) Ta có : \(\frac{3n+1}{n-2}=\frac{3n-6+7}{n-2}=\frac{3.\left(n-2\right)+7}{n-2}=3+\frac{7}{n-2}\)
Lập bảng ta có :
n-2 | 1 | -1 | 7 | -7 |
n | 3 | 1 | 9 | -5 |
a) Để \(H=\frac{9}{\sqrt{n}-5}\)là 1 số nguyên
\(\Rightarrow9⋮\sqrt{n}-5\Rightarrow\sqrt{n}-5\inƯ\left(9\right)=\left(\pm1;\pm3;\pm9\right)\)
Ta có bảng sau:
\(\sqrt{n}-5\) | 1 | -1 | 3 | -3 | 9 | -9 |
\(\sqrt{n}\) | 6 | 4 | 8 | 2 | 14 | -4 |
\(n\) | 2.44 | 2 | 2.828 | 1.41 | 3.74 | -2 |
Mà \(n\in Z\Rightarrow n\in\left(2;-2\right)\)
\(Dk...n\ne2\Leftrightarrow D=\frac{n^2+3n-21}{2-n}\)
n^2-3n=n(n-3)=0=> n=0 hoac n=3
a) \(D=\frac{-21}{2}\) hoạc \(\frac{6n-21}{2-n}=\frac{18-21}{2-3}=3\)
b)\(D=\frac{-11-5\left(2-n\right)-n\left(2-n\right)}{2-n}=\frac{11}{n-2}-n-5\)
D nguyên=> n-2={-11,-1,1,11}=> n={-9,1.3.13}