Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\left[6\cdot\dfrac{1}{27}+3\cdot\dfrac{1}{3}+1\right]:\dfrac{-4}{3}\)
\(=\left(\dfrac{2}{9}+2\right)\cdot\dfrac{-3}{4}\)
\(=\dfrac{20}{9}\cdot\dfrac{-3}{4}=\dfrac{-60}{36}=\dfrac{-5}{3}\)
b: \(B=\dfrac{\dfrac{1}{3}\left(\dfrac{1}{13}-\dfrac{1}{2}-\dfrac{1}{17}\right)}{-\dfrac{1}{4}\left(\dfrac{1}{13}-\dfrac{1}{2}-\dfrac{1}{17}\right)}:\dfrac{11}{6}\)
\(=\dfrac{-1}{3}:\dfrac{1}{4}\cdot\dfrac{6}{11}=\dfrac{-4}{3}\cdot\dfrac{6}{11}=\dfrac{-24}{33}=\dfrac{-8}{11}\)
1. Tính:
a. \(\dfrac{\text{−1 }}{\text{4 }}+\dfrac{\text{5 }}{\text{6 }}=\dfrac{-3}{12}+\dfrac{10}{12}=\dfrac{7}{12}\)
b. \(\dfrac{\text{5 }}{\text{12 }}+\dfrac{\text{-7 }}{8}=\dfrac{10}{24}+\dfrac{-21}{24}=\dfrac{-11}{24}\)
c. \(\dfrac{-7}{6}+\dfrac{-3}{10}=\dfrac{-35}{30}+\dfrac{-9}{30}=\dfrac{-44}{30}=\dfrac{-22}{15}\)
d.\(\dfrac{-3}{7}+\dfrac{5}{6}=\dfrac{-18}{42}+\dfrac{35}{42}=\dfrac{17}{42}\)
2. Tính :
a. \(\dfrac{2}{14}-\dfrac{5}{2}=\dfrac{2}{14}-\dfrac{35}{14}=\dfrac{-33}{14}\)
b.\(\dfrac{-13}{12}-\dfrac{5}{18}=\dfrac{-39}{36}-\dfrac{10}{36}=\dfrac{49}{36}\)
c.\(\dfrac{-2}{5}-\dfrac{-3}{11}=\dfrac{-2}{5}+\dfrac{3}{11}=\dfrac{-22}{55}+\dfrac{15}{55}=\dfrac{-7}{55}\)
d. \(0,6--1\dfrac{2}{3}=\dfrac{6}{10}--\dfrac{5}{3}=\dfrac{3}{5}+\dfrac{5}{3}=\dfrac{9}{15}+\dfrac{25}{15}=\dfrac{34}{15}\)
3. Tính :
a.\(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-4}{156}+\dfrac{-3}{156}=\dfrac{-7}{156}\)
b.\(\dfrac{-6}{9}-\dfrac{12}{16}=\dfrac{2}{3}-\dfrac{3}{4}=\dfrac{8}{12}-\dfrac{9}{12}=\dfrac{-17}{12}\)
c. \(\dfrac{-3}{7}-\dfrac{-2}{11}=\dfrac{-3}{7}+\dfrac{2}{11}=\dfrac{-33}{77}+\dfrac{14}{77}=\dfrac{-19}{77}\)
d.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{1}+\dfrac{1}{10}\)
\(=\dfrac{10}{10}-\dfrac{1}{10}\)
= \(\dfrac{9}{10}\)
Chế Kazuto Kirikaya thử tham khảo thử đi !!!
Mấy câu trên kia dễ rồi mình chữa mình câu \(c\) bài \(3\) thôi nhé Kazuto Kirikaya
d) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
\(P=\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}{\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}}\\ \Rightarrow P=\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}{\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}}\\ \)
\(\Rightarrow P=\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}{\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ \Rightarrow P=\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}{\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\)
\(\Rightarrow P=\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}{\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)}\\ \Rightarrow P=\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\\ \Rightarrow P=1\)
a: \(=\dfrac{3}{8}\left(27+\dfrac{1}{5}-51-\dfrac{1}{5}\right)+19\)
\(=-24\cdot\dfrac{3}{8}+19=-9+19=10\)
b: \(=\left(35+\dfrac{1}{6}-46-\dfrac{1}{6}\right):\left(\dfrac{-4}{5}\right)\)
\(=\dfrac{-11\cdot5}{-4}=\dfrac{55}{4}\)
c: \(=\left(\dfrac{-15+8}{20}\right):\left[\dfrac{3}{7}+\dfrac{7}{3}\cdot\dfrac{12-5}{20}\right]\)
\(=\dfrac{-7}{20}:\left(\dfrac{3}{7}+\dfrac{49}{60}\right)\)
\(=-\dfrac{147}{523}\)
a: \(=\dfrac{3}{8}\left(72+\dfrac{1}{5}-51-\dfrac{1}{5}\right)=\dfrac{3}{8}\cdot21=\dfrac{63}{8}\)
b: \(=25\cdot\dfrac{-1}{125}+\dfrac{1}{5}-2\cdot\dfrac{1}{4}-\dfrac{1}{2}=-\dfrac{1}{2}-\dfrac{1}{2}=-1\)
c: \(=4\left(35+\dfrac{1}{6}\right)\cdot\dfrac{-1}{5}-\left(45+\dfrac{1}{6}\right)\cdot\dfrac{-1}{5}\)
\(=\dfrac{-1}{5}\left(140+\dfrac{2}{3}-45-\dfrac{1}{6}\right)=-\dfrac{191}{10}\)
Bạn không nói gì, mình sẽ rút gọn nhé.
\(2+\dfrac{1}{2+\dfrac{1}{1+\dfrac{68}{288}}}\\ =2+\dfrac{1}{2+\dfrac{1}{1+\dfrac{17}{72}}}\\ =2+\dfrac{1}{2+\dfrac{1}{\dfrac{89}{72}}}\\ =2+\dfrac{1}{2+\dfrac{72}{89}}\\ =2+\dfrac{1}{\dfrac{250}{89}}\\ =2+\dfrac{89}{250}=\dfrac{589}{250}\)
Vậy thôi, chúc bạn học tốt nhé.
Ta có:
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)\)
\(=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)(1)
Lại có:
\(B\)\(=\dfrac{2013}{51}+\dfrac{2013}{52}+...+\dfrac{2013}{100}\)
\(=2013\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\right)\)(2)
Từ (1),(2)\(\Rightarrow\dfrac{B}{A}=2013\)
\(\Rightarrow\dfrac{B}{A}\) là số nguyên
Ta có:
A\(=\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{5\cdot6}+....+\dfrac{1}{99\cdot100}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...\dfrac{1}{99}-\dfrac{1}{100}\)
=\(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}...\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}...\dfrac{1}{100}\right)\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-2\cdot\left(\dfrac{1}{2}+\dfrac{1}{4}...+\dfrac{1}{100}\right)\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)\)
=\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)
Và:
B=\(\dfrac{2013}{51}+\dfrac{2013}{52}+...+\dfrac{2013}{100}\)
=\(2013\cdot\left(\dfrac{1}{51}+\dfrac{1}{52}+...\dfrac{1}{100}\right)\)
\(\Rightarrow\dfrac{B}{A}=2013\)
Vậy\(\dfrac{B}{A}\)là một số nguyên
a) \(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-4}{156}+\dfrac{-3}{156}=\dfrac{-7}{156}\)
b) \(\dfrac{-6}{9}+\dfrac{-12}{16}=\dfrac{-2}{3}+\dfrac{-3}{4}=\dfrac{-8}{12}+\dfrac{-9}{12}=\dfrac{-17}{12}\)
c) \(\dfrac{-2}{5}-\dfrac{-3}{11}=\dfrac{-22}{55}-\dfrac{-15}{55}=\dfrac{-7}{55}\)
d) \(\dfrac{-34}{37}.\dfrac{74}{-85}=\dfrac{4}{5}\)
e) \(\dfrac{-5}{9}:\dfrac{-7}{18}=\dfrac{-5}{9}.\dfrac{18}{-7}=\dfrac{10}{7}\)
Lời giải:
a)
\(\frac{\frac{2}{3}-\frac{2}{5}+\frac{2}{7}-\frac{2}{9}+\frac{2}{11}}{\frac{8}{3}-\frac{8}{5}+\frac{8}{7}-\frac{8}{9}+\frac{8}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}\right)}{8\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}\right)}\) \(=\frac{2}{8}=\frac{1}{4}\)
b)
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{50}-1\right)\left(\frac{1}{51}-1\right)\)
\(=\frac{1-2}{2}.\frac{1-3}{3}.\frac{1-4}{4}....\frac{1-50}{50}.\frac{1-51}{2}=\frac{(-1)(-2)(-3)...(-49)(-50)}{2.3.4....50.51}\)
\(=\frac{(-1)^{50}.1.2.3....49.50}{2.3.4...50.51}=\frac{1}{51}\)
\(\dfrac{\dfrac{1}{6}-\dfrac{1}{39}+\dfrac{1}{51}}{\dfrac{1}{8}-\dfrac{1}{52}+\dfrac{1}{68}}\)
\(\dfrac{11}{\dfrac{78}{\dfrac{11}{104}+\dfrac{1}{68}}}+\dfrac{1}{51}\)
\(\dfrac{71}{\dfrac{442}{\dfrac{213}{1768}}}\)\(\Rightarrow\dfrac{4}{3}\)
= \(\dfrac{4}{3}\)