Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{\dfrac{2022}{1}+\dfrac{2021}{2}+\dfrac{2020}{3}+...+\dfrac{1}{2022}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}}\)
Xét TS = \(\dfrac{2022}{1}\) + \(\dfrac{2021}{2}\) \(\dfrac{2020}{3}\) +... + \(\dfrac{1}{2022}\)
TS = (1 + \(\dfrac{2021}{2}\)) + (1 + \(\dfrac{2020}{3}\)) + ... + ( 1 + \(\dfrac{1}{2022}\)) + 1
TS = \(\dfrac{2023}{2}\) + \(\dfrac{2023}{3}\) +...+ \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2023}\)
TS = 2023.(\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) +...+ \(\dfrac{1}{2023}\))
A = \(\dfrac{2023.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}{\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}\)
A = 2023
Ta có :
\(\dfrac{10^{2023}}{10^{2024}}=\dfrac{10^{2022}}{10^{2023}}\)
mà \(\dfrac{10^{2023}}{10^{2024}}>\dfrac{10^{2023}-3}{10^{2024}-3}\)
\(\dfrac{10^{2022}}{10^{2023}}< \dfrac{10^{2022}+1}{10^{2023}+1}\)
\(\Rightarrow\dfrac{10^{2023}-3}{10^{2024}-3}< \dfrac{10^{2022}+1}{10^{2023}+1}\)
So sánh
A = \(\dfrac{2022^{2023}+1}{2022^{2024}+1}\) và B = \(\dfrac{2022^{2022}+1}{2022^{2023}+1}\)
Trước hết ta phải chứng minh \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).
Thật vậy, \(\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{a+ab}{b^2+b}\) và \(\dfrac{a+1}{b+1}=\dfrac{\left(a+1\right)b}{\left(b+1\right)b}=\dfrac{ab+b}{b^2+b}\).
Mà theo giả thuyết là a < b nên \(\dfrac{a+ab}{b^2+b}< \dfrac{ab+b}{b^2+b}\), suy ra \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).
Từ đây ta có:
\(B=\dfrac{2022^{2022}+1}{2022^{2023}+1}=\dfrac{2022^{2023}+2022}{2022^{2024}+2022}=\dfrac{2022^{2023}+2021+1}{2022^{2024}+2021+1}\)
Đặt \(A_1=\dfrac{2022^{2023}+2}{2022^{2024}+2}=\dfrac{2022^{2023}+1+1}{2022^{2024}+1+1}\), rõ ràng \(A_1>A\).
Đặt \(A_2=\dfrac{2022^{2023}+3}{2022^{2024}+3}=\dfrac{2022^{2023}+2+1}{2022^{2024}+2+1}\), rõ ràng \(A_2>A_1\).
...
Đặt \(A_{2020}=\dfrac{2022^{2023}+2021}{2022^{2024}+2021}=\dfrac{2022^{2023}+2020+1}{2022^{2024}+2020+1}\), rõ ràng \(A_{2020}>A_{2019}\) và \(B>A_{2020}\).
Suy ra \(B>A_{2020}>A_{2019}>...>A_2>A_1>A\). Vậy A < B.
Ta có A = \(\dfrac{2022^{2023}}{2022^{2024}}=\dfrac{1}{2022}\) ; B = \(\dfrac{2022^{2022}}{2022^{2023}}=\dfrac{1}{2022}\)
Mà \(\dfrac{1}{2022}=\dfrac{1}{2022}\)
Vậy A = B
a
ĐK: \(x\ne5\)
\(\dfrac{x-5}{3}=\dfrac{-12}{5-x}\\ \Leftrightarrow\dfrac{x-5}{3}=\dfrac{12}{x-5}\\ \Leftrightarrow\left(x-5\right)^2=12.3=36\\ \Leftrightarrow\left\{{}\begin{matrix}x-5=6\\x-5=-6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=11\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
b
ĐK: \(x\ne0;x\ne-1\)
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\)
\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\\ \Leftrightarrow2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{x}.\dfrac{1}{x+1}\right)=\dfrac{2023}{2024}\\ \Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2023}{2024}\\ \Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2023}{4048}\\ \Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{2023}{4048}=\dfrac{1}{4048}\\ \Leftrightarrow4048=x+1\\ \Leftrightarrow x=4047\left(tm\right)\)
a: =>(x-5)/3=12/(x-5)
=>(x-5)^2=36
=>x-5=6 hoặc x-5=-6
=>x=11 hoặc x=-1
b: =>\(2\left(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2023}{2024}\)
=>1/2-1/3+1/3-1/4+...+1/x-1/x+1=2023/4048
=>1/2-1/x+1=2023/4048
=>1/(x+1)=1/4048
=>x+1=4048
=>x=4047
\(\dfrac{x+23}{2021}+\dfrac{x+22}{2022}+\dfrac{x+21}{2023}+\dfrac{x+20}{2024}=-4\)
Vì \(\dfrac{x+23}{2021}+\dfrac{x+22}{2022}+\dfrac{x+21}{2023}+\dfrac{x+20}{2024}=-4\)
\(\Rightarrow\dfrac{x+23}{2021}+\dfrac{x+22}{2022}+\dfrac{x+21}{2023}+\dfrac{x+20}{2024}+4=0\)
\(\Rightarrow\left(\dfrac{x+23}{2021}+1\right)+\left(\dfrac{x+22}{2022}+1\right)+\left(\dfrac{x+21}{2023}+1\right)+\left(\dfrac{x+20}{2024}+1\right)=0\)
\(\Rightarrow\dfrac{x+2044}{2021}+\dfrac{x+2044}{2022}+\dfrac{x+2044}{2023}+\dfrac{x+2044}{2024}=0\)
\(\Rightarrow\left(x+2044\right)\left(\dfrac{1}{2021}+\dfrac{1}{2022}+\dfrac{1}{2023}+\dfrac{1}{2024}\right)=0\)
\(\Rightarrow x+2044=0\left(\dfrac{1}{2021}+\dfrac{1}{2022}+\dfrac{1}{2023}+\dfrac{1}{2024}\ne0\right)\)
\(\Rightarrow x=-2024\)
a, Ta có :\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\\ \Rightarrow2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\\ \Rightarrow2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{50}}\right)\\ \Rightarrow A=1-\dfrac{1}{2^{50}}< 1\\ \Rightarrow A< 1\) Vậy \(A< 1\)
b, Ta có :
\(B=\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}\)Vậy \(B< \dfrac{1}{2}\)
c, Ta có :
\(C=\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\\ \Rightarrow4C=1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\\\Rightarrow4C-C=\left(1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\right)-\left(\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\right)\\ \Rightarrow3C=1-\dfrac{1}{4^{1000}}< 1\\ \Rightarrow C< \dfrac{1}{3}\)Vậy \(C< \dfrac{1}{3}\)
\(\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{9}-\dfrac{2023}{2024}\right)\)
\(=\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{2023}{2024}\)
\(=\dfrac{2023}{2024}\)
Giải:
a) \(\dfrac{1}{3}x+\dfrac{1}{5}-\dfrac{1}{2}x=1\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{6}x=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{1}{6}x=\dfrac{-21}{20}\)
\(\Leftrightarrow x=\dfrac{-63}{10}\)
Vậy ...
b) \(\dfrac{3}{2}\left(x+\dfrac{1}{2}\right)-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{3}{2}x+\dfrac{3}{4}-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{11}{8}x=\dfrac{-1}{2}\)
\(\Leftrightarrow x=\dfrac{-4}{11}\)
Vậy ...
Các câu sau làm tương tự câu b)
\(\dfrac{1}{R\left(x\right)}=\dfrac{1}{x\left(x+2\right)}=\dfrac{1}{2}\left(\dfrac{1}{x}-\dfrac{1}{x+2}\right)\)
\(\Rightarrow S=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2022}-\dfrac{1}{2024}+\dfrac{1}{2023}-\dfrac{1}{2025}\right)+\dfrac{1}{2.2023}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{2024}-\dfrac{1}{2025}\right)+\dfrac{1}{2.2023}\)
Một kết quả rất xấu
a
= { 1*( 1+1/2+1/3+1/4) } / { 1 * ( 1-1/2 +1/3-1/4)} : { 3*(1+1/2+1/3+1/4)} / { 2*( 1-1/2 +1/3-1/4)}
Sau đó bn tự tính ra nhé cứ tính nhu bình thường sẽ ra.
Mà mình thấy máy câu này yêu cầu tính chứ có bảo tính theo cách hợp lí đâu? Vì thế bn cứ lấy máy tính tính như bình thường là được .
Ta đặt:
\(A=\dfrac{2023}{1}+\dfrac{2022}{2}+\dfrac{2021}{3}+...+\dfrac{1}{2023}\)
\(A=1+\dfrac{2022}{2}+1+\dfrac{2021}{3}+1+...+\dfrac{1}{2023}+1\)
\(A=\dfrac{2024}{2024}+\dfrac{2024}{2}+\dfrac{2024}{3}+....+\dfrac{2024}{2023}\)
\(A=2024\times\left(\dfrac{1}{2024}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2023}\right)\)
\(\Rightarrow\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2024}}{\dfrac{2023}{1}+\dfrac{2022}{2}+...+\dfrac{1}{2023}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2024}}{2024\times\left(\dfrac{1}{2024}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2023}\right)}=\dfrac{1}{2024}\)
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2024}}{\dfrac{2023}{1}+\dfrac{2022}{2}+...+\dfrac{1}{2023}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2024}}{\left(1+\dfrac{2022}{2}\right)+\left(1+\dfrac{2021}{3}\right)+...+\left(1+\dfrac{1}{2023}\right)+1}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2024}}{\dfrac{2024}{2}+\dfrac{2024}{3}+...+\dfrac{2024}{2023}+\dfrac{2024}{2024}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2024}}{2024\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2024}\right)}=\dfrac{1}{2024}\)