\(\dfrac{a\sqrt{a}+b\sqrt{b}+a\sqrt{b}+b\sqrt{a}}{a-b}\). Cho a, b>0, ab =1. Tìm GTNN<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(a-\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{1}\)

\(=a-1\)

b: \(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{\sqrt{ab}+b+\sqrt{ab}-b}{\sqrt{a}\left(a-b\right)}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{1}{\sqrt{a}}\)

c: \(=\dfrac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\sqrt{\dfrac{b\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+\sqrt{b}\right)^2}}\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=b\)

20 tháng 6 2018

Câu a

\(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}\)

\(=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}\)

\(=\left(\sqrt{a}+\sqrt{b}\right):\dfrac{1}{\sqrt{a}-\sqrt{b}}\)

\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{1}\)

\(=a-b\)

3 tháng 12 2018

\(VT=\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)=a-b\)

3 tháng 12 2018

c.ơn

AH
Akai Haruma
Giáo viên
2 tháng 9 2017

Bài 1:

Áp dụng BĐT Bunhiacopxky:

\(M^2=(a\sqrt{9b(a+8b)}+b\sqrt{9a(b+8a)})^2\)

\(\leq (a^2+b^2)(9ab+72b^2+9ab+72a^2)\)

\(\Leftrightarrow M^2\leq (a^2+b^2)(72a^2+72b^2+18ab)\)

Áp dụng BĐT AM-GM: \(a^2+b^2\geq 2ab\Rightarrow 18ab\leq 9(a^2+b^2)\)

Do đó, \(M^2\leq (a^2+b^2)(72a^2+72b^2+9a^2+9b^2)=81(a^2+b^2)^2\)

\(\Leftrightarrow M\leq 9(a^2+b^2)\leq 144\)

Vậy \(M_{\max}=144\Leftrightarrow a=b=\sqrt{8}\)

Bài 6:

\(a+\frac{1}{a-1}=1+(a-1)+\frac{1}{a-1}\)

\(a>1\rightarrow a-1>0\). Do đó áp dụng BĐT Am-Gm cho số dương\(a-1,\frac{1}{a-1}\) ta có:

\((a-1)+\frac{1}{a-1}\geq 2\sqrt{\frac{a-1}{a-1}}=2\)

\(\Rightarrow a+\frac{1}{a-1}=1+(a-1)+\frac{1}{a-1}\geq 3\) (đpcm)

Dấu bằng xảy ra khi \(a-1=1\Leftrightarrow a=2\)

AH
Akai Haruma
Giáo viên
2 tháng 9 2017

Bài 3:

Xét \(\sqrt{a^2+1}\). Vì \(ab+bc+ac=1\) nên:

\(a^2+1=a^2+ab+bc+ac=(a+b)(a+c)\)

\(\Rightarrow \sqrt{a^2+1}=\sqrt{(a+b)(a+c)}\)

Áp dụng BĐT AM-GM có: \(\sqrt{(a+b)(a+c)}\leq \frac{a+b+a+c}{2}=\frac{2a+b+c}{2}\)

hay \(\sqrt{a^2+1}\leq \frac{2a+b+c}{2}\)

Hoàn toàn tương tự với các biểu thức còn lại và cộng theo vế:

\(\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\leq \frac{2a+b+c}{2}+\frac{2b+a+c}{2}+\frac{2c+a+b}{2}=2(a+b+c)\)

Ta có đpcm. Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Bài 4:

Ta có:

\(A=\frac{8a^2+b}{4a}+b^2=2a+\frac{b}{4a}+b^2\)

\(\Leftrightarrow A+\frac{1}{4}=2a+\frac{b+a}{4a}+b^2=2a+b+\frac{b+a}{4a}+b^2-b\)

\(a+b\geq 1, a>0\) nên \(A+\frac{1}{4}\geq a+1+\frac{1}{4a}+b^2-b\)

Áp dụng BĐT AM-GM:

\(a+\frac{1}{4a}\geq 2\sqrt{\frac{1}{4}}=1\)

\(\Rightarrow A+\frac{1}{4}\geq 2+b^2-b=\left(b-\frac{1}{2}\right)^2+\frac{7}{4}\geq \frac{7}{4}\)

\(\Leftrightarrow A\geq \frac{3}{2}\).

Vậy \(A_{\min}=\frac{3}{2}\Leftrightarrow a=b=\frac{1}{2}\)

19 tháng 7 2018

câu a nè:

http://123link.pw/0Qyw5v

19 tháng 7 2018

câu d nè : http://123link.pw/Jx46C

nhớ cho đúng nha ^-^

AH
Akai Haruma
Giáo viên
1 tháng 4 2018

Lời giải:

Với những bài như này em chỉ cần nắm rõ điểm rơi rồi phân tích hợp lý để áp dụng những BĐT quen thuộc là được.

Ta có:

\(P=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}=\frac{3(a+b)}{4\sqrt{ab}}+\frac{a+b}{\sqrt{4ab}}+\frac{\sqrt{ab}}{a+b}\)

Áp dụng BĐT AM-GM ta có:

\(a+b\geq 2\sqrt{ab}\Rightarrow 3(a+b)\geq 6\sqrt{ab}\Rightarrow \frac{3(a+b)}{4\sqrt{ab}}\geq \frac{6\sqrt{ab}}{4\sqrt{ab}}=\frac{3}{2}\)

Và:

\(\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\geq 2\sqrt{\frac{1}{4}}=1\)

Do đó:

\(P=\frac{3(a+b)}{4\sqrt{ab}}+\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\geq \frac{3}{2}+1=\frac{5}{2}\)

Vậy \(P_{\min}=\frac{5}{2}\)

Dấu bằng xảy ra khi \(a=b\)

1 tháng 4 2018

Cold Wind không cần kiểu mò mẫn (điểm rơi ) .

\(t=\dfrac{a+b}{\sqrt{ab}}\) quá đơn giản nhận ra \(t\ge2\)

\(P\left(t\right)=t+\dfrac{1}{t}=\dfrac{t^2+1}{t}=m\Leftrightarrow\left\{{}\begin{matrix}t^2-mt+1=0\\t\ge2\end{matrix}\right.\)\(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)

(1)có nghiệm<=> :\(\left\{{}\begin{matrix}m\in\left(-vc;-2\right)U\left(2;vc\right)\\t=\dfrac{m\pm\sqrt{m^2-4}}{2}\end{matrix}\right.\)

\(t\ge2\Leftrightarrow\dfrac{m+\sqrt{m^2-4}}{2}\ge2\Leftrightarrow\sqrt{m^2-4}\ge4-m\)

m>4 luôn đúng

xét \(m\le4\) \(\Leftrightarrow m^2-4\ge16-8m+m^2\Leftrightarrow m\ge\dfrac{20}{8}=\dfrac{5}{2}\)

\(\Rightarrow P_{min}=\dfrac{5}{2}\) khi t =2 <=> a=b>0

5 tháng 7 2018

\(1.\) Gỉa sử : \(\sqrt{25-16}< \sqrt{25}-\sqrt{16}\)

\(\Leftrightarrow3< 1\) ( Vô lý )

\(\Rightarrow\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)

\(2.\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< a-b\)

\(\Leftrightarrow a-2\sqrt{ab}+b< a-b\)

\(\Leftrightarrow2b-2\sqrt{ab}< 0\)

\(\Leftrightarrow2\left(b-\sqrt{ab}\right)< 0\)

Ta có :\(a>b\Leftrightarrow ab>b^2\Leftrightarrow\sqrt{ab}>b\)

\(\RightarrowĐpcm.\)

\(2a.\) Áp dụng BĐT Cauchy , ta có :

\(a+b\ge2\sqrt{ab}\left(a;b\ge0\right)\)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(b.\) Áp dụng BĐT Cauchy cho các số dương , ta có :

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\left(x,y>0\right)\left(1\right)\)

\(\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{yz}}\left(y,z>0\right)\left(2\right)\)

\(\dfrac{1}{x}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{xz}}\left(x,z>0\right)\left(3\right)\)

Cộng từng vế của ( 1 ; 2 ; 3 ) , ta được :

\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)

5 tháng 7 2018

\(3a.\sqrt{x-4}=a\left(a\in R\right)\left(x\ge4;a\ge0\right)\)

\(\Leftrightarrow x-4=a^2\)

\(\Leftrightarrow x=a^2+4\left(TM\right)\)

\(3b.\sqrt{x+4}=x+2\left(x\ge-2\right)\)

\(\Leftrightarrow x+4=x^2+4x+4\)

\(\Leftrightarrow x^2+3x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-3\left(KTM\right)\end{matrix}\right.\)

KL....

13 tháng 7 2018

b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)

\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)

\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)

\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)

\(VT=0=VP\)

22 tháng 4 2017

a) \(\sqrt{\dfrac{a}{b}}+\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{a}{b}}\) với a>0 và b>0

b) \(\sqrt{\dfrac{m}{1-2x+x^2}}.\sqrt{\dfrac{4m-8mx+4mx^2}{81}}=\sqrt{\dfrac{m}{1-2x+x^2}}.\sqrt{\dfrac{4m\left(2-2x+x^2\right)}{81}}\)

\(=\sqrt{\dfrac{4m^2\left(1-2x+x^2\right)}{81\left(1-2x+x^2\right)}}=\sqrt{\dfrac{4m^2}{81}}=\sqrt{\dfrac{2m}{9}}\)