Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện xác định : \(x\ge0;x\ne1\)
a) ta có : \(A=\left(\dfrac{1}{1-\sqrt{x}}+\dfrac{1}{1+\sqrt{x}}\right):\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{1+\sqrt{x}}\right)+\dfrac{1}{1-\sqrt{x}}\)
\(\Leftrightarrow A=\left(\dfrac{2}{1-x}\right):\left(\dfrac{2\sqrt{x}}{1-x}\right)+\dfrac{1}{1-\sqrt{x}}\)
\(\Leftrightarrow A=\left(\dfrac{2}{1-x}\right)\left(\dfrac{1-x}{2\sqrt{x}}\right)+\dfrac{1}{1-\sqrt{x}}=\dfrac{1}{\sqrt{x}}+\dfrac{1}{1-\sqrt{x}}\)ta có : \(x=7+4\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
\(\Rightarrow A=\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{1-2-\sqrt{3}}=\dfrac{5-3\sqrt{3}}{2}\)
b) áp dụng cauchuy-schwarz dạng engel ta có :
\(A=\dfrac{1}{\sqrt{x}}+\dfrac{1}{1-\sqrt{x}}\ge4\)
dấu "=" xảy ra khi : \(\sqrt{x}=1-\sqrt{x}\Leftrightarrow2\sqrt{x}=1\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)
vậy ....................................................................................................................
a) DKXD: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)
P=\(\left(\dfrac{a-1}{2\sqrt{a}}\right)^2.\left(\dfrac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\\ =\dfrac{\left(a-1\right)^2}{4a}.\left(\dfrac{\left(\sqrt{a}-1-\sqrt{a}-1\right)\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\right)\)
= \(\dfrac{a-1}{4a}.\dfrac{-2.2\sqrt{a}}{1}\)
= \(\dfrac{1-a}{\sqrt{a}}\)
b) P<0 với a ∈ DKXD
=> \(\dfrac{1-a}{\sqrt{a}}< 0\)
mà √a > 0 với ∀a ∈ DKXD
=> 1-a < 0
<=> a>1 ( thoả mãn DKXD)
Vậy để P<0 thì a>1.
c) Để P = 2 với a ∈ DKXD
=> \(\dfrac{1-a}{\sqrt{a}}=2\)
<=> 1-a = 2√a
<=> a + 2√a -1 = 0
<=> \(\left[{}\begin{matrix}\sqrt{a}=-1+\sqrt{2}\\\sqrt{a}=-1-\sqrt{2}\left(loại\right)\end{matrix}\right.\)
<=> a = \(\sqrt{\sqrt{2}-1}\)(thoả mãn DKXD)
Vậy để P =2 thì a = \(\sqrt{\sqrt{2}-1}\)
Sửa đề: \(P=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)
a) Ta có: \(P=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(=\left(\dfrac{a}{2\sqrt{a}}-\dfrac{1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\left(\dfrac{a-1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\dfrac{\left(\sqrt{a}-1\right)^2\cdot\left(\sqrt{a}+1\right)^2}{4a}\cdot\dfrac{-4\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\dfrac{\left(\sqrt{a}-1\right)\cdot\left(\sqrt{a}+1\right)\cdot\left(-1\right)}{\sqrt{a}}\)
\(=\dfrac{-\left(a-1\right)}{\sqrt{a}}\)
\(=\dfrac{1-a}{\sqrt{a}}\)
b) Để P<0 thì \(\dfrac{1-a}{\sqrt{a}}< 0\)
mà \(\sqrt{a}>0\forall a\) thỏa mãn ĐKXĐ
nên 1-a<0
hay a>1
Kết hợp ĐKXĐ, ta được: a>1
Vậy: Để P<0 thì a>1
c) Để P=2 thì \(\dfrac{1-a}{\sqrt{a}}=2\)
\(\Leftrightarrow1-a=2\sqrt{a}\)
\(\Leftrightarrow2\sqrt{a}+a-1=0\)
\(\Leftrightarrow a+2\sqrt{a}+1-2=0\)
\(\Leftrightarrow\left(\sqrt{a}+1\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}+1=\sqrt{2}\\\sqrt{a}+1=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=\sqrt{2}-1\\\sqrt{a}=-\sqrt{2}-1\left(loại\right)\end{matrix}\right.\)
hay \(a=3-2\sqrt{2}\)(nhận)
Vậy: Để P=2 thì \(a=3-2\sqrt{2}\)
1. \(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right).\left(\sqrt{a}.\dfrac{4}{\sqrt{a}}\right)=\dfrac{\left(\sqrt{a}-2\right)^2-\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}.4=\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}.4=\dfrac{-64\sqrt{a}}{a-4}\)Nếu nhân tu thứ 2 của phép tính là \(\sqrt{a}-\dfrac{4}{\sqrt{a}}\) thì kết quả của phép tính là -16 nha bạn
2.\(\left(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{1+\sqrt{a}}\right).\left(1-\dfrac{1}{\sqrt{a}}\right)=\dfrac{1+\sqrt{a}-1+\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}.\dfrac{-\left(1-\sqrt{a}\right)}{\sqrt{a}}=\dfrac{-2\sqrt{a}}{\left(1+\sqrt{a}\right)\sqrt{a}}=\dfrac{-2}{1+\sqrt{a}}\)\(\left(a>0,a\ne1\right)\)
a)
\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}-2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\\=\dfrac{\left(\left(\sqrt{x^2+4}\right)^2-4\right)\left(\left(x+\sqrt{x}+1\right)\sqrt{\left(x-1\right)^2}\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{\left(x^2+4-4\right)\left(\left(x+\sqrt{x}+1\right)\left(x-1\right)\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{x^2\left(x^3-1\right)}{x\left(x\sqrt{x}-1\right)}=x^2\sqrt{x}\)
b)
\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a}{\sqrt{a}}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{a-4}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\\ =\dfrac{-8\sqrt{a}}{a-4}\cdot\dfrac{a-4}{\sqrt{a}}=-8\)
c)
\(\left(\dfrac{\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\\ =\dfrac{2a+2}{a-1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(a+1\right)}{a+1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(\sqrt{a}-1\right)}{\sqrt{a}}\)
d)
\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\\ =\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1\\ =x-\sqrt{x}-x-\sqrt{x}+x+1\\ =x-2\sqrt{x}+1\\ =\left(x-1\right)^2\)
Bài 1:
a)Với x > 0;x ≠ 4 ta có:
\(\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right)\cdot\dfrac{x+2\sqrt{x}}{\sqrt{x}}\)
\(=\left(\dfrac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\)
\(=\dfrac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\left(\sqrt{x}+2\right)-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\cdot\left(\sqrt{x}+2\right)\)
\(=\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}+2\right)-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4}{x-4}\)
c)\(\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}-\dfrac{\sqrt{a}}{\sqrt{ab}-b}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)
\(=\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right)\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\dfrac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)=b-a\)
Bài 2:
a)Với a > 0;a ≠ 1;a ≠ 2 ta có
\(P=\left(\dfrac{\sqrt{a}^3-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}^3+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{a-2}{a+2}\)
\(=\left(\dfrac{a+\sqrt{a}+1}{\sqrt{a}}-\dfrac{a-\sqrt{a}+1}{\sqrt{a}}\right)\cdot\dfrac{a-2}{a+2}\)
\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}\)
\(=\dfrac{2\sqrt{a}}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}=\dfrac{2\left(a-2\right)}{a+2}\)
b)Ta có:
\(P=\dfrac{2\left(a-2\right)}{a+2}=\dfrac{2a-4}{a+2}=\dfrac{2\left(a+2\right)-8}{a+2}=2-\dfrac{8}{a+2}\)
P nguyên khi \(2-\dfrac{8}{a+2}\) nguyên⇒\(\dfrac{8}{a+2}\) nguyên⇒\(a+2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(TH1:a+2=1\Rightarrow a=-1\left(loai\right)\)
\(TH2:a+2=-1\Rightarrow a=-3\left(loai\right)\)
\(TH3:a+2=2\Rightarrow a=0\left(loai\right)\)
\(TH4:a+2=-2\Rightarrow a=-4\left(loai\right)\)
\(TH5:a+2=4\Rightarrow a=2\left(loai\right)\)
\(TH6:a+2=-4\Rightarrow a=-6\left(loai\right)\)
\(TH7:a+2=8\Rightarrow a=6\left(tm\right)\)
\(TH8:a+2=-8\Rightarrow a=-10\left(loai\right)\)
Vậy a = 6
1) Biểu thức này là P hả?
ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)
P = \(\dfrac{\sqrt{a^3}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a^3}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\left(\dfrac{a-1}{\sqrt{a}}\right).\left(\dfrac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{a-1}\right)\)
= \(\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}+\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{\sqrt{a}}\)= \(\dfrac{a+\sqrt{a}+1-\left(a-\sqrt{a}+1\right)+2a+2}{\sqrt{a}}\)
= \(\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1+2a+2}{\sqrt{a}}\)
= \(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)
2) Để P = 7 với a ∈ ĐKXĐ
⇒ \(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\) = 7
⇔ 2a + 2√a+2 = 7√a
⇔ 2a - 5√a + 2 = 0
⇔ \(\left[{}\begin{matrix}a=2\\a=\dfrac{1}{2}\end{matrix}\right.\)( thoả mãn ĐKXĐ)
Vậy...
3) Để P > 6 với a ∈ ĐKXĐ
⇒ \(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\) >6
⇔ \(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\) - 6 > 0
⇔ \(\dfrac{2a+2\sqrt{a}-6\sqrt{a}+2}{\sqrt{a}}>0\)
Mà √a > 0 với ∀a ∈ ĐKXĐ
⇒ 2a - 4√a + 2 >0
⇔ 2(√a - 1)2 > 0
Do 2(√a - 1)2 ≥ 0 với ∀a ∈ ĐKXĐ
Nên để 2(√a - 1)2 > 0 ⇔ 2(√a - 1)2 ≠ 0
⇔ a ≠ 1
Đối chiếu ĐKXĐ ta được: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)
Vậy để P > 6 thì a ∈ ĐKXĐ
ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)
1) Ta có: \(P=\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\cdot\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)
\(=\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}+\left(\dfrac{a}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\cdot\left(\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\dfrac{a+\sqrt{a}+1}{\sqrt{a}}-\dfrac{a-\sqrt{a}+1}{\sqrt{a}}+\dfrac{a-1}{\sqrt{a}}\cdot\left(\dfrac{a+2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\dfrac{a-2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}+\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\cdot\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\dfrac{2\sqrt{a}}{\sqrt{a}}+\dfrac{2a+2}{\sqrt{a}}\)
\(=\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)
2) Để P=7 thì \(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}=7\)
\(\Leftrightarrow2a+2\sqrt{a}+2=7\sqrt{a}\)
\(\Leftrightarrow2a+2\sqrt{a}-7\sqrt{a}+2=0\)
\(\Leftrightarrow2a-5\sqrt{a}+2=0\)
\(\Leftrightarrow2a-4\sqrt{a}-\sqrt{a}+2=0\)
\(\Leftrightarrow2\sqrt{a}\left(\sqrt{a}-2\right)-\left(\sqrt{a}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{a}-2\right)\left(2\sqrt{a}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}-2=0\\2\sqrt{a}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=2\\2\sqrt{a}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=4\\\sqrt{a}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=4\left(nhận\right)\\a=\dfrac{1}{4}\left(nhận\right)\end{matrix}\right.\)
Vậy: Để P=7 thì \(a\in\left\{4;\dfrac{1}{4}\right\}\)