Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{2}{3}+\dfrac{3}{5}=\dfrac{10}{15}+\dfrac{9}{15}=\dfrac{19}{15}\)
a) \(\dfrac{7}{12}-\dfrac{2}{7}+\dfrac{1}{12}=\dfrac{2}{3}-\dfrac{2}{7}=\dfrac{14}{21}-\dfrac{6}{21}=\dfrac{8}{21}\)
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)
TL:
\(\frac{12}{100}\)= 0,12
\(\frac{5}{100}\)= 0,05
\(\frac{306}{1000}\)= 0,306
-HT-
Ta có công thức tổng quát:
\(\dfrac{k}{n\cdot\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\)
\(a,A=\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}\\ =\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\dfrac{x-2}{5\left(x+3\right)}\\ =\dfrac{x-2}{15\left(x+3\right)}\)
Theo đề bài ta có:
\(A=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{15\left(x+3\right)}=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{303}{308}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{305-2}{305+3}\\ \Rightarrow x=305\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{101}-\frac{1}{103}\)
\(A=\frac{1}{3}-\frac{1}{103}\)
\(A=\frac{100}{309}\)
\(A=\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{99\times101}+\frac{2}{101\times103}\)
\(A=1\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}+\frac{1}{101}-\frac{1}{103}\right)\)
\(A=1\times\left(\frac{1}{3}-\frac{1}{103}\right)\)
\(A=1\times\frac{100}{309}\)
\(A=\frac{100}{309}\)
\(a.\) \(3\frac{3}{4}+\left(4\frac{2}{4}-3\frac{1}{2}\right):\frac{3}{4}\)
\(=\frac{15}{4}\left(\frac{18}{4}-\frac{7}{2}\right):\frac{3}{4}\)
\(=\frac{15}{4}+\frac{4}{4}:\frac{3}{4}=\frac{15}{4}+\frac{4}{3}\)
\(=\frac{15}{4}+\frac{4}{3}=\frac{61}{12}\)
\(b.\) \(7\cdot\frac{2}{3}-\frac{2}{5}:\frac{1}{2}-\frac{2}{3}\)
\(=\frac{7}{3}-\frac{2}{5}\cdot2-\frac{2}{3}\)
\(=\frac{7}{3}-\frac{4}{5}-\frac{2}{3}=\frac{35-12-10}{15}\)
\(=\frac{13}{15}\)
\(c.\) \(68,7-100:20+70,8\)
\(=68,7-5+70,8\)
\(=63,7+70,8\)
\(=134,5\)
\(d.\)\(\left(5915+445:5\right)-76\cdot25\)
\(=\left(5915+89\right)-1900\)
\(=6004-1900=4104\)
a)=\(\frac{15}{4}+\left(\frac{18}{4}-\frac{7}{2}\right)\)/ \(\frac{3}{4}\)
=\(\left(\frac{33}{4}-\frac{14}{4}\right)\)/ \(\frac{3}{4}\)
= \(\frac{19}{4}\cdot\frac{4}{3}\)
=\(\frac{19}{3}\)
b) = \(\frac{2}{3}\cdot\left(7-1\right)-\frac{2}{5}\cdot\frac{2}{1}\)
= \(\frac{2}{3}\cdot6-\frac{4}{5}\)
= 1-\(\frac{4}{5}\)
= \(\frac{1}{5}\)
c) = 68.7 - 5 + 70.8
= 63.7 + 70.8
=134.5
d) = (5915 - 89) -76*25
= 5826 - 1900
= 3926
\(\dfrac{13+x}{20}\) = \(\dfrac{3}{4}\)
13 + \(x\) = 20 \(\times\) \(\dfrac{3}{4}\)
13 + \(x\) = 15
\(x\) = 15 - 13
\(x\) = 2
Cách khác :
\(\dfrac{13+x}{20}=\dfrac{3}{4}\)
\(\dfrac{13+x}{20}=\dfrac{15}{20}\)
\(13+x=15\)
\(x=15-13\)
\(x=2\)
bằng 27/35 bạn nhé
Chúc bạn học tốt
\(\dfrac{76}{5}-\dfrac{101}{7}=\dfrac{532}{35}-\dfrac{505}{35}=\dfrac{27}{35}\)