\((\dfrac{6\sqrt{x}+6}{x+2\sqrt{x}-3}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}):\dfrac{1}{\sqrt{x}+3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2021

ĐKXĐ: \(x\ge0,x\ne1\)

\(\left(\dfrac{6\sqrt{x}+6}{x+2\sqrt{x}-3}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}+3}\)

\(=\left(\dfrac{6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right).\left(\sqrt{x}+3\right)\)

\(=\dfrac{6\sqrt{x}+6-\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}.\left(\sqrt{x}+3\right)\)

\(=\dfrac{-x+\sqrt{x}}{\sqrt{x}-1}=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=-\sqrt{x}\)

9 tháng 6 2021

sao lại ra âm căn x nhỉ, mk ra căn x

Bài 2:

a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)

\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)

\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)

b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)

17 tháng 7 2018

\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)

\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)

\(\Leftrightarrow\sqrt{x}-2< 0\)

\(\Leftrightarrow x< 4\)

Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)

KL............

\(2.\) Tương tự bài 1.

\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)

\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)

AH
Akai Haruma
Giáo viên
9 tháng 8 2018

Lời giải:

ĐK: \(x\geq 0; x\neq 4;x\neq 9\)

a) Ta có:

\(P=\left(\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}-3)}+\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right):\left(2-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(P=\left(\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}-3)}+\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-2)(\sqrt{x}-3)}-\frac{(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}-3)(\sqrt{x}-2)}\right):\frac{2\sqrt{x}+2-\sqrt{x}}{\sqrt{x}+1}\)

\(P=\frac{\sqrt{x}+2+(x-9)-(x-4)}{(\sqrt{x}-2)(\sqrt{x}-3)}:\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

\(P=\frac{\sqrt{x}-3}{(\sqrt{x}-2)(\sqrt{x}-3)}.\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+1}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{\sqrt{x}+1}{x-4}\)

b)

Ta có: \(\frac{1}{P}\leq \frac{-5}{2}\)\(\Leftrightarrow \frac{x-4}{\sqrt{x}+1}\leq \frac{-5}{2}\)

\(\Leftrightarrow 2(x-4)\leq -5(\sqrt{x}+1)\)

\(\Leftrightarrow 2x+5\sqrt{x}-3\leq 0\)

\(\Leftrightarrow (2\sqrt{x}-1)(\sqrt{x}+3)\leq 0\)

\(\Rightarrow 2\sqrt{x}-1\leq 0\) (do \(\sqrt{x}+3>0\) )

\(\rightarrow x\leq \frac{1}{4}\)

Vậy \(0\leq x\leq \frac{1}{4}\)

\(P=\dfrac{2x+4\sqrt{x}+6+x+\sqrt{x}-6+3\sqrt{x}-3-2x-4\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(A=\sqrt{\dfrac{18-3\sqrt{3}}{11}}-\sqrt{2+\sqrt{3}}\)

\(=\dfrac{\sqrt{11\left(18-3\sqrt{3}\right)}}{11}-\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{11\left(18-3\sqrt{3}\right)}}{11}-\dfrac{\sqrt{3}+1}{\sqrt{2}}\)

\(=\dfrac{\sqrt{11\left(18-3\sqrt{3}\right)}}{11}-\dfrac{\sqrt{6}+\sqrt{2}}{2}\)

\(=\dfrac{2\sqrt{11\left(18-3\sqrt{3}\right)}-11\sqrt{6}-11\sqrt{2}}{22}\)

b: \(=\dfrac{x\sqrt{x}-2x+28-x+16-x-9\sqrt{x}-8}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-4x-9\sqrt{x}+36}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}=\dfrac{x-9}{\sqrt{x}+1}\)

a: \(A=\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\dfrac{4+\sqrt{3}}{5-2\sqrt{3}}}\)

\(=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{\sqrt{2}}=-\sqrt{2}\)

b: \(B=\dfrac{x\sqrt{x}-2x+28}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}-\dfrac{x-16}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}-\dfrac{\left(\sqrt{x}+8\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-2x+28-x+16-x-9\sqrt{x}-8}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-4\sqrt{x}-9\sqrt{x}+36}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}=\dfrac{x-9}{\sqrt{x}+1}\)

19 tháng 8 2018

ĐKXĐ : \(x\ge0\) ; \(x\ne4\)\(x\ne9\)

\(A=\left(\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{2-\sqrt{x}}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\right):\left(2-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\dfrac{\sqrt{x}+2+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}+2-\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)

\(=\dfrac{1}{\sqrt{x}-2}.\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}+1}{x-4}\)

Câu b : \(\dfrac{1}{A}< \dfrac{1}{5}\Leftrightarrow\dfrac{x-4}{\sqrt{x}+1}< \dfrac{1}{5}\Leftrightarrow5x-20< \sqrt{x}+1\Leftrightarrow5x-\sqrt{x}-21< 0\)Mysterious Person Tới đây làm sao nữa :(((

19 tháng 8 2018

\(\text{a) }ĐKXĐ:x\ge0;x\ne4;x\ne9\\ A=\left(\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{2-\sqrt{x}}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\right):\left(2-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\\ =\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\\ =\dfrac{\sqrt{x}+2+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}+2-\sqrt{x}}{\sqrt{x}+1}\\ =\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\\ =\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{\sqrt{x}+1}{x-4}\)

\(b\text{) }\dfrac{1}{A}\le\dfrac{1}{5}\\ \Leftrightarrow A\ge5\\ \Leftrightarrow\dfrac{\sqrt{x}+1}{x-4}\ge5\\ \Leftrightarrow\dfrac{\sqrt{x}+1}{x-4}-5\ge0\\ \Leftrightarrow\dfrac{\sqrt{x}+1-5\left(x-4\right)}{x-4}\ge0\\ \Leftrightarrow\dfrac{\sqrt{x}+1-5x+20}{x-4}\ge0\\ \Leftrightarrow\dfrac{\sqrt{x}-5x+21}{x-4}\ge0\\ \Leftrightarrow\dfrac{\left(\sqrt{x}-\dfrac{1+\sqrt{421}}{10}\right)\left(\sqrt{x}-\dfrac{1-\sqrt{421}}{10}\right)}{\sqrt{x}-2}\ge0\)

Rồi lập bảng xét dấu.

Bài 2:

\(=\sqrt{8-4\sqrt{3}}\cdot\sqrt{\dfrac{\sqrt{6}+\sqrt{2}}{\sqrt{6}-\sqrt{2}}}\)

\(=\sqrt{8-4\sqrt{3}}\cdot\sqrt{\dfrac{\left(\sqrt{6}+\sqrt{2}\right)^2}{6-2}}\)

\(=\left(\sqrt{6}-\sqrt{2}\right)\cdot\dfrac{\left(\sqrt{6}+\sqrt{2}\right)}{2}\)

\(=\dfrac{6-2}{2}=\dfrac{4}{2}=2\)

bài 2: 

a: \(\dfrac{25}{5-2\sqrt{3}}=\dfrac{125+10\sqrt{3}}{13}\)

b: \(\dfrac{8}{\sqrt{5}+2}=8\sqrt{5}-32\)

c: \(\dfrac{6}{2\sqrt{3}-\sqrt{7}}=\dfrac{12\sqrt{3}+6\sqrt{7}}{5}\)

d: \(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}=\dfrac{\sqrt{6}}{2}\)