\(\dfrac{60}{7200}+\dfrac{60}{4200}\)=?     tính bằng cách quy đồng

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{1}{120}+\dfrac{1}{70}=\dfrac{7+12}{840}=\dfrac{19}{840}\)

31 tháng 1 2022

\(\dfrac{60}{7200}+\dfrac{60}{4200}=\dfrac{1}{120}+\dfrac{1}{70}\) (MSC: BCNN(120;70)=840)

\(=\dfrac{7}{840}+\dfrac{12}{840}=\dfrac{19}{840}\)

16 tháng 4 2017

a)\(\dfrac{11}{120};\dfrac{21}{120}\)

b)\(\dfrac{312}{1898};\dfrac{876}{1898}\)

c)\(\dfrac{28}{120};\dfrac{26}{120};\dfrac{-27}{120}\)

d)\(\dfrac{51}{180};\dfrac{-50}{180};\dfrac{-128}{180}\)

16 tháng 4 2017

a) Rút gọn:

\(\dfrac{-1}{6};\dfrac{1}{5};\dfrac{-1}{2}\)

Quy đồng:

\(\dfrac{-5}{30};\dfrac{6}{30};\dfrac{-15}{30}\)

b) Rút gọn:

\(\dfrac{-3}{5};\dfrac{-5}{8};\dfrac{-4}{9}\)

Quy đồng:

\(\dfrac{-216}{360};\dfrac{-225}{360};\dfrac{-160}{360}\)

28 tháng 2 2018

Rất tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

batngobanhqua

16 tháng 5 2017

(C) 7/60

1 tháng 3 2018

(C) 7/60

16 tháng 3 2017

Mẫu số chung : \(LCM\left(60;120;36;90;72\right)=360\)

Quy đồng mẫu số :

\(\dfrac{360}{360}+\dfrac{-6}{360}+\dfrac{57}{360}< \dfrac{10\cdot x}{360}< \dfrac{232}{360}+\dfrac{295}{360}+\dfrac{-6}{360}\)

\(\Leftrightarrow\dfrac{411}{360}< \dfrac{10\cdot x}{360}< \dfrac{521}{360}\)

Vậy tập hợp các giá trị của x là \(x=\left\{42;43;44;45;46;47;48;49;50;51;52\right\}\)

16 tháng 3 2017

Cảm ơn!

17 tháng 3 2018

\(\dfrac{-14}{21};\dfrac{-2}{15};\dfrac{14}{-35}\)

\(\dfrac{-17}{21}=\dfrac{-85}{105}\);\(\dfrac{-2}{15}=\dfrac{-14}{105};\dfrac{14}{-35}=\dfrac{-14}{35}=\dfrac{-42}{105}\)

\(\dfrac{17}{60};\dfrac{5}{12};\dfrac{64}{90}\)

\(\dfrac{17}{60}=\dfrac{51}{180};\dfrac{-5}{12}=\dfrac{-75}{180};\dfrac{-64}{90}=\dfrac{-32}{45}=\dfrac{-128}{180}\)

bài2:

a)\(\dfrac{3}{5}>\dfrac{4}{7}\)

b)\(\dfrac{-5}{8}< \dfrac{-7}{12}\)

c)\(\dfrac{5}{-3}< \dfrac{-9}{12}\)

16 tháng 4 2017

\(\dfrac{2}{3}=\dfrac{40}{60}\)

\(\dfrac{3}{4}=\dfrac{45}{60}\)

\(\dfrac{4}{5}=\dfrac{48}{60}\)

\(\dfrac{5}{6}=\dfrac{50}{60}\)

9 tháng 5 2017

2/3=40/60

3/4=45/60

4/5=48/60

5/6=50/60

2 tháng 5 2017

a) \(-\dfrac{2}{3}x+\dfrac{1}{5}=\dfrac{3}{10}\)

\(-\dfrac{2}{3}x=\dfrac{3}{10}-\dfrac{1}{5}\)

\(-\dfrac{2}{3}x=\dfrac{1}{10}\)

x=\(\dfrac{1}{10}:-\dfrac{2}{3}\)

\(x=-\dfrac{3}{20}\)

Vậy \(x=-\dfrac{3}{20}\).

b) \(\dfrac{1}{3}+\dfrac{2}{3}:x=-7\)

\(\dfrac{2}{3}:x=-7-\dfrac{1}{3}\)

\(\dfrac{2}{3}:x=-\dfrac{22}{3}\)

\(x=\dfrac{2}{3}:-\dfrac{22}{3}\)

\(x=-\dfrac{1}{11}\)

Vậy \(x=-\dfrac{1}{11}\).

c) \(60\%x=\dfrac{1}{3}\cdot6\dfrac{1}{3}\)

\(60\%x=\dfrac{19}{9}\)

\(\dfrac{3}{5}x=\dfrac{19}{9}\)

\(x=\dfrac{19}{9}:\dfrac{3}{5}\)

\(x=\dfrac{95}{27}\)

Vậy \(x=\dfrac{95}{27}\).

d) \(\left(\dfrac{2}{3}-x\right):\dfrac{3}{4}=\dfrac{1}{5}\)

\(\dfrac{2}{3}-x=\dfrac{1}{5}\cdot\dfrac{3}{4}\)

\(\dfrac{2}{3}-x=\dfrac{3}{20}\)

\(x=\dfrac{2}{3}-\dfrac{3}{20}\)

\(x=\dfrac{31}{60}\)

Vậy \(x=\dfrac{31}{60}\).

e) \(-2x-\dfrac{-3}{5}:\left(-0.5\right)^2=-1\dfrac{1}{4}\)

\(-2x-\dfrac{-12}{5}=-1\dfrac{1}{4}\)

\(-2x=-1\dfrac{1}{4}+\dfrac{-12}{5}\)

\(-2x=-\dfrac{73}{20}\)

\(x=-\dfrac{73}{20}:\left(-2\right)\)

\(x=\dfrac{73}{40}\)

Vậy \(x=\dfrac{73}{40}\).

a: Sai

b: Đúng

c: Sai

7 tháng 3 2017

Ta có:

\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(\Rightarrow S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

Nhận xét:

\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{4}\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{1}{5}\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{1}{6}\)

\(\Rightarrow S>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{60}>\frac{3}{5}\)

\(\Rightarrow S>\frac{3}{5}\left(1\right)\)

Lại có:

\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

Nhận xét:

\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}< \frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{1}{3}\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}< \frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{4}\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{1}{5}\)

\(\Rightarrow S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{4}{5}\)

\(\Rightarrow S< \frac{4}{5}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow\frac{3}{5}< S< \frac{4}{5}\) (Đpcm)