Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{12}{5}\)
\(-\dfrac{39}{2}\)
28
\(-\dfrac{9}{4}\)
Ta có:\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}>4\cdot\dfrac{1}{16}=\dfrac{1}{4}\)
\(\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}+\dfrac{1}{20}>4\cdot\dfrac{1}{20}=\dfrac{1}{5}\)
=>\(\dfrac{1}{13}+\dfrac{1}{14}+...+\dfrac{1}{20}>\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{9}{20}\)
=>A>\(\dfrac{1}{12}+\dfrac{9}{20}\)
\(\dfrac{1}{12}>\dfrac{1}{20}\)
=>\(A>\dfrac{1}{20}+\dfrac{9}{20}=\dfrac{1}{2}\)
Vậy...
\(B=\left|157\dfrac{13}{27}-273\dfrac{7}{19}\right|-96\dfrac{14}{27}+15\dfrac{12}{19}\)
\(=273\dfrac{7}{19}-153\dfrac{13}{27}-96\dfrac{14}{27}+15\dfrac{12}{19}\)
\(=\left(273+15+\dfrac{7}{19}+\dfrac{12}{19}\right)-\left(153+96+\dfrac{13}{27}+\dfrac{14}{27}\right)\)
\(=289-250=39\)
bài giải:
đặt biểu thức bằng A
=> A= \(\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)
ta thấy:\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< 3.\dfrac{1}{13}\)
\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< 3.\dfrac{1}{61}\)
=> A<\(\dfrac{1}{5}+\dfrac{3}{13}+\dfrac{3}{61}\)<\(\dfrac{1}{2}\)
=> đpcm.
A=\(\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\)=\(\dfrac{5}{3}\)=0.625
0.625 > 8998
like cho mình nha!
Rút gọn các biểu thức sau:
E = \(\dfrac{9.5^{20}.27^9-3.9^{15}.25^9}{7.3^{29}.125^6-3.3^9.15^{19}}\)
\(=\dfrac{3^2\cdot5^{20}\cdot3^{27}-3\cdot3^{30}\cdot5^{18}}{7\cdot3^{29}\cdot5^{13}-3^{29}\cdot5^{19}}=\dfrac{3^{29}\cdot5^{20}-5^{18}\cdot3^{31}}{3^{29}\cdot5^{13}\cdot7-3^{29}\cdot5^{19}}\)
\(=\dfrac{3^{29}\cdot5^{18}\left(5^2-3^2\right)}{3^{29}\cdot5^{13}\left(7-5^6\right)}=5^5\cdot\dfrac{4^2}{7-5^6}\)
Đặt A = \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\)
2A = \(2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\right)\)
2A = \(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\)
2A + A = \(\left(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\right)\)
3A = \(1-\dfrac{1}{64}\)
3A = \(\dfrac{63}{64}\) < 1
hay 3A < 1
=> A < \(\dfrac{1}{3}\)
Vậy .................. (tự kết luận)
125= 5^3 suy ra 125^21=(5^^3)^^21=5^63
16^15=(2^4)^15=2^60
8^19=(2^3)^19=2^57
suy ra pt tương đương (5^62*2^60)/(2^57*5^63)=2^3/5=8/5