Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\left\{\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{9999}{10000}\right\}\Rightarrow99\)số
\(A=\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{9}\right)+...+\left(1-\dfrac{1}{100000}\right)\)
\(A=\left\{1+1+1+...+1\right\}\Rightarrow99\)số \(-\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{100000}=99-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{10000}\right)\)
Ta có: \(4=2^2>1.2\Rightarrow\dfrac{1}{4}< \dfrac{1}{1.2}\Leftrightarrow\dfrac{1}{4}< \dfrac{1}{1}-\dfrac{1}{2}\)
Tương tự: \(\dfrac{1}{9}< \dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{16}< \dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{10000}< \dfrac{1}{99}-\dfrac{1}{100}\)
Cộng theo vế ta được: \(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+\dfrac{1}{10000}< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)
\(\Rightarrow A=99-\left(\dfrac{1}{4}+\dfrac{1}{6}+\dfrac{1}{16}+...+\dfrac{1}{10000}\right)>99-1=98\)
Vậy \(A>98\)
C = 3/4 + 8/9 + 15/16 + ... + 9999/10000
C = 1- 1/4 + 1- 1/9 + 1- 1/16 + ... + 1- 1/10000
C = ( 1+1+1+...+1) - (1/2.2 + 1/3.3 + 1/4.4 + ...+ 1/100.100) >
(1+1+1+...+1) - ( 1/1.2+1/2.3+1/3.4+...+1/99.100) = 99 - ( 1/1-1/2+1/2-1/3+1/3+1/4+...+1/9999-1/10000
= 99 - ( 1-1/10000)= 99 - 1 + 1/10000= 98+1/10000 > 98
Vậy C > 98
= 3 . 8 . 15 .... 9999 / 4 . 9 . 16 .... 10000
= ( 1 . 3 ) . ( 2 . 4 ) .( 3 . 5) .... ( 99 .... 101 ) / ( 2. 2) . (3.3). (4.4)...(100.100)
= 1. 101/100.2
= 101/ 200
a)
\(A=\dfrac{3}{4}.\dfrac{8}{9}...\dfrac{9999}{10000}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{99.101}{100.100}\)
\(=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}\)
\(=\dfrac{1}{100}.\dfrac{101}{2}\)
\(=\dfrac{101}{200}\)
\(a,\left(\dfrac{7}{20}+\dfrac{11}{15}-\dfrac{15}{12}\right):\left(\dfrac{11}{20}-\dfrac{26}{45}\right).\)
\(=\left(\dfrac{21}{60}+\dfrac{44}{60}-\dfrac{75}{60}\right):\left(\dfrac{99}{180}-\dfrac{104}{180}\right).\)
\(=\left(\dfrac{65}{60}-\dfrac{75}{60}\right):\left(-\dfrac{5}{180}\right).\)
\(=-\dfrac{10}{60}:\left(-\dfrac{5}{180}\right).\)
\(=-\dfrac{1}{6}:\left(-\dfrac{1}{36}\right).\)
\(=-\dfrac{1}{6}.\left(-36\right).\)
\(=\dfrac{-1.\left(-36\right)}{6}=\dfrac{36}{6}=6.\)
Vậy......
\(b,\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}:\dfrac{15-\dfrac{15}{11}+\dfrac{15}{121}}{16-\dfrac{16}{11}+\dfrac{16}{121}}.\)
\(=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}:\dfrac{15\left(1-\dfrac{1}{11}+\dfrac{1}{121}\right)}{16\left(1-\dfrac{1}{11}+\dfrac{1}{121}\right)}.\)
\(=\dfrac{5}{8}:\dfrac{15}{16}.\)
\(=\dfrac{5}{8}.\dfrac{16}{15}=\dfrac{5.16}{8.15}=\dfrac{1.2}{1.3}=\dfrac{2}{3}.\)
Vậy......
c, (làm tương tự câu b).
~ Học tốt!!! ~
Ta có:
\(\dfrac{n^2-1}{n^2}=1-\dfrac{1}{n^2}>1-\dfrac{1}{\left(n-1\right)n}\)
Áp dụng:
\(C=\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+\dfrac{4^2-1}{4^2}+...+\dfrac{100^2-1}{100^2}\)
\(C>1-\dfrac{1}{1.2}+1-\dfrac{1}{2.3}+1-\dfrac{1}{3.4}+...+1-\dfrac{1}{99.100}\)
\(C>99-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)
\(C>99-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(C>99-\left(1-\dfrac{1}{100}\right)\)
\(C>98+\dfrac{1}{100}>98\) (đpcm)
ta có :
1/2 < 2/3
2/3 <3/4
.........
9999/10000 < 10000/10001
suy ra : A2 < 1/22/33/4*****9999/1000010000/10001
suy ra : A2 < 1/10001 < 1/10000= (1/100)2
suy ra A2 < (1/100)2 . Từ đó: A < 1/100
2 là mũ 2 nha bạn
\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}...\dfrac{99.101}{100^2}\)
\(=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}=\dfrac{1}{100}.\dfrac{101}{2}=\dfrac{101}{200}\)