\(\dfrac{3}{2.5}\)+\(\dfrac{3}{5.8}\)+\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2023

\(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}\)

\(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}\)

\(=\dfrac{1}{2}-\dfrac{1}{17}\)

\(=\dfrac{15}{34}\)

Vì \(\dfrac{15}{34}< \dfrac{1}{2}=>\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot27}< \dfrac{1}{2}\)

19 tháng 8 2017

Đăng ít thôi.

d) \(D=\dfrac{1}{1.2.3}+\dfrac{1}{3.4.5}+\dfrac{1}{4.5.6}+\dfrac{1}{5.6.7}+\dfrac{1}{6.7.8}+\dfrac{1}{7.8.9}+\dfrac{1}{8.9.10}\)

\(\Rightarrow2D=\dfrac{2}{1.2.3}+\dfrac{2}{3.4.5}+\dfrac{2}{4.5.6}+\dfrac{2}{5.6.7}+\dfrac{2}{6.7.8}+\dfrac{2}{7.8.9}+\dfrac{2}{8.9.10}\)

\(\Rightarrow2D=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{4.5}-\dfrac{1}{5.6}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\)

\(\Rightarrow2D=\dfrac{1}{2.3}-\dfrac{1}{9.10}\)

\(\Rightarrow2D=\dfrac{22}{45}\)

\(\Rightarrow D=\dfrac{11}{45}\)

26 tháng 8 2017

Trả lời ít thôi.

T IÊU M Đại số lớp 6

bà cha m ra :v

25 tháng 4 2018

A = \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

A=\(\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{50}{100}-\dfrac{1}{100}=\dfrac{49}{100}\)

25 tháng 4 2018

B = \(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{49.51}\)

B = \(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{49}-\dfrac{1}{51}\)

B = \(\dfrac{1}{2}-\dfrac{1}{51}=\dfrac{51}{102}-\dfrac{2}{102}=\dfrac{49}{102}\)

\(A=\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{2006.2009}\\ A=\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{2006}-\dfrac{1}{2009}\\ A=\dfrac{1}{5}-\dfrac{1}{2009}=\dfrac{2004}{10045}\)

26 tháng 8 2017

\(A=\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{2006}-\dfrac{1}{2009}\)

\(=\dfrac{1}{5}-\dfrac{1}{2009}=\dfrac{2004}{10045}.\)

24 tháng 3 2017

B=1/2. (2/25.27+2/27.29+2/29.31+....+2/73.75) B=1/2. (1/25-1/27+1/27-1/29+1/29-1/31+....+1/73-1/75) B=1/2. (1/25-1/75) B=1/2. 2/75 B=1/75

29 tháng 3 2017

\(3A=\dfrac{3}{8.11}+\dfrac{3}{18.21}+..+\dfrac{3}{197.200}\)

31 tháng 8 2017

\(a,\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}=\dfrac{101}{1540}\)

\(\dfrac{1}{3}.3.\left[\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}\right]=\dfrac{101}{1540}\)

\(\dfrac{1}{3}.\left[\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}\right]=\dfrac{101}{1540}\)

\(\dfrac{1}{3}.\left[\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right]=\dfrac{101}{1540}\)

\(\dfrac{1}{3}.\left(\dfrac{1}{5-1}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)

\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{101}{1540}.\dfrac{1}{3}\)

\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}=\dfrac{1}{3}-\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}=\dfrac{1}{308}\)

\(\Rightarrow x+3=308\)

\(x=308-3\)

\(x=305\)

\(b,1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x.\left(x+1\right):2}=1\dfrac{1991}{1993}\)

\(\dfrac{1}{2}.\left(1+\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{x.\left(x+1\right):2}\right)=\dfrac{3984}{3986}\)

\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{8}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{3984}{3986}\)

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{3984}{3986}\)

\(\dfrac{2-1}{1.2}+\dfrac{4-3}{3.4}+...+x+1-\dfrac{x}{x.\left(x+1\right)}=\dfrac{3984}{3986}\)

\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}+\dfrac{1}{x+1}=\dfrac{3984}{3986}\)

\(1-\dfrac{1}{x+1}=\dfrac{3984}{3986}\)

\(\dfrac{1}{x+1}=1-\dfrac{3984}{3986}\)

\(\dfrac{1}{x+1}=\dfrac{1}{1993}\)

=>\(x+1=1993\)

\(x=1993-1\)

\(x=1992\)

30 tháng 7 2018

Giải:

\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)

\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)

\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)

\(\Leftrightarrow\dfrac{1}{15}-\dfrac{1}{3\left(x+3\right)}=\dfrac{101}{1540}\)

\(\Leftrightarrow\dfrac{1}{3x+9}=\dfrac{1}{924}\)

\(\Leftrightarrow3x+9=924\)

\(\Leftrightarrow3x=915\)

\(\Leftrightarrow x=305\)

Vậy ...

Bài 1: 

a: \(A=\dfrac{1\left(\dfrac{1}{13}-\dfrac{1}{17}-\dfrac{1}{23}\right)}{2\left(\dfrac{1}{13}-\dfrac{1}{17}-\dfrac{1}{23}\right)}\cdot\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}+\dfrac{6}{7}\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{7}+\dfrac{6}{7}=\dfrac{1}{7}+\dfrac{6}{7}=1\)

b: \(B=2000:\left[\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}\cdot\dfrac{-\dfrac{7}{6}+\dfrac{7}{8}-\dfrac{7}{10}}{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}\right]\)

\(=2000:\left[\dfrac{2}{7}\cdot\dfrac{-7}{2}\right]=-2000\)

c: \(C=10101\cdot\left(\dfrac{5}{111111}+\dfrac{1}{111111}-\dfrac{4}{111111}\right)\)

\(=10101\cdot\dfrac{2}{111111}=\dfrac{2}{11}\)

28 tháng 7 2017

1. x3 - \(\dfrac{4}{25}\)x = 0
<=> x(x2 - \(\dfrac{4}{25}\)) = 0
<=> \(\left[{}\begin{matrix}x=0\\x^2-\dfrac{4}{25}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=\dfrac{4}{25}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{5}\end{matrix}\right.\) (thỏa mãn)
Vậy x = 0; 2/5
@Phan Đức Gia Linh

28 tháng 7 2017

1 ) \(x^3-\dfrac{4}{25}x=0\)

\(\Leftrightarrow x\left(x^2-\dfrac{4}{25}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{4}{25}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x-\dfrac{2}{5}=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm\dfrac{2}{5}\end{matrix}\right.\)

Vậy .............

2 ) \(3^{4x+4}=9^{x+2}\)

\(\Leftrightarrow3^{4x+4}=\left(3^2\right)^{x+2}\)

\(\Leftrightarrow4x+4=2x+4\)

\(\Leftrightarrow2x=0\Leftrightarrow x=0.\)

3 ) \(3\left(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{97.100}\right)=\dfrac{319}{100}\) ( thiếu đề hay sao )

4 ) \(\left(6-x\right)^{2014}=\left(6-x\right)^{2015}\)

\(\Leftrightarrow\left(6-x\right)^{2014}-\left(6-x\right)^{2015}=0\)

\(\Leftrightarrow\left(6-x\right)^{2014}\left(1-6+x\right)=0\)

\(\Leftrightarrow\left(6-x\right)^{2014}\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(6-x\right)^{2014}=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=5\end{matrix}\right.\)

Vậy ......

5) \(2+4+6+...+2x=210\)

\(\Leftrightarrow2.1+2.2+2.3+...+2.x=210\)

\(\Leftrightarrow2\left(1+2+3+...+x\right)=210\)

\(\Leftrightarrow1+2+3+...+x=105\)

\(\Leftrightarrow\dfrac{\left(x+1\right).x}{2}=105\)

\(\Leftrightarrow x\left(x+1\right)=210\)

Ta lại có : \(x\left(x+1\right)=14\left(14+1\right)\)

\(\Leftrightarrow x=14\)

Vậy ......

6 ) \(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+..+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)

\(\Leftrightarrow\dfrac{1}{3.7}+\dfrac{1}{4.7}+\dfrac{1}{4.7}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)

\(\Leftrightarrow\dfrac{2}{2.3.7}+\dfrac{2}{2.4.7}+\dfrac{2}{2.4.9}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)

\(\Leftrightarrow\dfrac{2}{6.7}+\dfrac{2}{8.7}+\dfrac{2}{8.9}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)

\(\Leftrightarrow2\left(\dfrac{1}{6.7}+\dfrac{1}{8.7}+\dfrac{1}{8.9}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2}{9}\)

\(\Leftrightarrow2.\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{8}-\dfrac{1}{7}+\dfrac{1}{8}-\dfrac{1}{9}+...+\dfrac{1}{\dfrac{x-1}{x+1}}\right)=\dfrac{2}{9}\)

\(\Leftrightarrow\dfrac{1}{6}+\dfrac{1}{x+1}=\dfrac{1}{9}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{18}\)

\(\Leftrightarrow x=17.\)

Vậy ...........

\(\)

20 tháng 3 2017

a , \(\left(\dfrac{-2}{3}+1\dfrac{1}{4}-\dfrac{1}{6}\right):\dfrac{-24}{10}\)

=\(\left(\dfrac{-2}{3}+\dfrac{5}{4}-\dfrac{1}{6}\right):\dfrac{-12}{5}\)

=\(\left(\dfrac{-8}{12}+\dfrac{15}{12}-\dfrac{2}{12}\right)\cdot\dfrac{-5}{12}\)

=\(\dfrac{5}{12}\cdot\dfrac{-5}{12}=\dfrac{-25}{144}\)

b , \(\dfrac{13}{15}\cdot0,25\cdot3+\left(\dfrac{8}{15}-1\dfrac{19}{60}\right)1\dfrac{23}{24}\)

=\(\dfrac{13}{15}\cdot\dfrac{1}{4}\cdot3+\left(\dfrac{8}{15}-\dfrac{79}{60}\right)\cdot\dfrac{57}{24}\)

=\(\dfrac{13}{20}-\dfrac{47}{60}\cdot\dfrac{57}{24}\)

=\(\dfrac{13}{20}-\dfrac{893}{480}=\dfrac{312}{480}-\dfrac{893}{480}=\dfrac{-581}{480}\)

c , \(\left(\dfrac{12}{32}+\dfrac{5}{-20}-\dfrac{10}{24}\right):\dfrac{2}{3}\)

=\(\left(\dfrac{180}{480}-\dfrac{120}{480}-\dfrac{200}{480}\right)\cdot\dfrac{3}{2}\)

= \(\dfrac{-7}{24}\cdot\dfrac{3}{2}=\dfrac{-7}{16}\)

d , \(4\dfrac{1}{2}:\left(2,5-3\dfrac{3}{4}\right)+\left(-\dfrac{1}{2}\right)\)

=\(\dfrac{9}{2}:\left(\dfrac{5}{2}-\dfrac{15}{4}\right)-\dfrac{1}{2}\)

=\(\dfrac{9}{2}:\dfrac{-5}{4}-\dfrac{1}{2}=\dfrac{9}{2}\cdot\dfrac{-4}{5}-\dfrac{1}{2}=\dfrac{-18}{5}-\dfrac{1}{2}=\dfrac{-41}{10}\)

e , \(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)=\dfrac{-5}{2}\left(\dfrac{3}{4}-\dfrac{2}{4}\right)\)

=\(\dfrac{-5}{2}:\dfrac{1}{4}=\dfrac{-5}{2}\cdot4=-10\)

27 tháng 3 2017

A=\(\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-3}\)

A=\(\left(\dfrac{2}{7}+\dfrac{11}{7}+\dfrac{1}{7}\right)+\left(\dfrac{1}{3}+\dfrac{5}{-3}\right)+\dfrac{-3}{8}\)

A=\(2+\dfrac{-4}{3}+\dfrac{-3}{8}\)

A=\(\dfrac{7}{24}\)

B=\(\dfrac{3}{17}+\dfrac{-5}{13}+\dfrac{-18}{35}+\dfrac{14}{17}+\dfrac{17}{-35}+\dfrac{-8}{13}\)

B=\(\left(\dfrac{3}{17}+\dfrac{14}{17}\right)+\left(\dfrac{-18}{35}+\dfrac{17}{-35}\right)+\left(\dfrac{-5}{13}+\dfrac{-8}{13}\right)\)

B=\(\dfrac{17}{17}+\dfrac{-35}{35}+\dfrac{-13}{13}\)

B=\(1+\left(-1\right)+\left(-1\right)=-1\)

C=\(\dfrac{-3}{17}+\left(\dfrac{2}{3}+\dfrac{3}{17}\right)\)

C=\(\dfrac{-3}{17}+\dfrac{2}{3}+\dfrac{3}{17}=\left(\dfrac{-3}{17}+\dfrac{3}{17}\right)+\dfrac{2}{3}\)

C=0+\(\dfrac{2}{3}=\dfrac{2}{3}\)

D=\(\left(\dfrac{-1}{6}+\dfrac{5}{-12}\right)+\dfrac{7}{12}\)

D=\(\dfrac{-1}{6}+\dfrac{5}{-12}+\dfrac{7}{12}\)

D=\(\dfrac{-2}{12}+\dfrac{-5}{12}+\dfrac{7}{12}=\left(\dfrac{-2}{12}+\dfrac{-5}{12}\right)+\dfrac{7}{12}\)

D=\(\dfrac{-7}{12}+\dfrac{7}{12}=0\)