Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P=\sqrt{x}\left(\dfrac{\sqrt{x}}{x^2-1}+\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{x-1}\right)-\dfrac{5x}{x^2-1}\)
\(=\sqrt{x}\left(\dfrac{\sqrt{x}}{x^2-1}+\dfrac{4\sqrt{x}}{x-1}\right)-\dfrac{5x}{x^2-1}\)
\(=\sqrt{x}\left(\dfrac{\sqrt{x}+4\sqrt{x}\left(x+1\right)}{\left(x^2-1\right)}\right)-\dfrac{5x}{x^2-1}\)
\(=\dfrac{x+4x\left(x+1\right)}{x^2-1}-\dfrac{5x}{x^2-1}\)
\(=\dfrac{x+4x^2+4x-5x}{x^2-1}\)
\(=\dfrac{4x^2}{x^2-1}\)
Khi x=4 thì \(P=\dfrac{4\cdot16}{16-1}=\dfrac{64}{15}\)
b: Để P/Q=0 thì P=0
=>x=0
Đề bài sai: Khi \(x=4\) thì \(A=\dfrac{1}{2};B=\dfrac{28}{9};\dfrac{A}{B}=\dfrac{9}{56};\dfrac{x-2}{4\sqrt{x}}=\dfrac{1}{4}\Rightarrow\dfrac{A}{B}\ne\dfrac{x-2}{4\sqrt{x}}\)
1 )Ta có :
\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}>\dfrac{1}{6}\)
\(\Rightarrow6\left(\sqrt{x}-2\right)>3\sqrt{x}\)
\(\Rightarrow6\sqrt{x}-3\sqrt{x}-2>0\)
\(\Rightarrow3\sqrt{x}>2\)
\(\Rightarrow\sqrt{x}>\dfrac{2}{3}\)
\(\Rightarrow x>\dfrac{4}{9}\)
2)
Giả sử
\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}>\dfrac{1}{3}\)
=> \(3\sqrt{x}>x+\sqrt{x}+1\)
\(\Rightarrow x+\sqrt{x}+1-3\sqrt{x}< 0\)
\(\Rightarrow\left(x-2\sqrt{x}+1\right)< 0\Leftrightarrow\left(\sqrt{x-1}\right)^2< 0\) ( vô lí )
Bất đẳng thức trên là sai, mà các phép biến dổi là tương đương
\(\Rightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}< \dfrac{1}{3}\)
\(A=B:C\)
\(C=\dfrac{x+\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\)
\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{1}{1-\sqrt{x}}+\dfrac{2-x}{x-\sqrt{x}}=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}.\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(\left\{{}\begin{matrix}x>0;\ne1\\A=\dfrac{x}{\sqrt{x}-1}\end{matrix}\right.\)
\(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)=\left[\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\left[\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{x-1}{\sqrt{x}}\)
a)
<=>(x-y)+(x-y)/xy≥0
(x-y)(1-1/xy)≥0
x,y≥1=> 1/(xy)≤1=(1-1/(xy)≥0
x≥y=>x-y≥0
=> (x-y)(1-1/xy)≥0 => dccm
dang thuc khi x=y
or x.y=1
Đề là ntn:
\(A=49\left(\dfrac{1}{2.9}+\dfrac{1}{9.16}+\dfrac{1}{16.23}+...+\dfrac{1}{65.72}\right):\dfrac{1}{3}-\dfrac{7}{36}\)
\(A=7\left(\dfrac{1}{2}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{23}+...+\dfrac{1}{65}-\dfrac{1}{72}\right):\dfrac{1}{3}-\dfrac{7}{36}\)
\(A=7\left(\dfrac{1}{2}-\dfrac{1}{72}\right):\dfrac{1}{3}-\dfrac{7}{36}\)
\(A=7.\dfrac{35}{72}:\dfrac{1}{3}-\dfrac{7}{36}\)
\(A=\dfrac{245}{72}:\dfrac{1}{3}-\dfrac{7}{36}\)
\(A=\dfrac{735}{72}-\dfrac{7}{36}=\dfrac{735}{72}-\dfrac{14}{36}=\dfrac{721}{36}\)
Đề là Thực hiện biến đổi toán học và kết hợp với máy tính . Tính số nghịch đảo của biểu thức ?
=>\(\dfrac{400}{x+1}-\dfrac{300}{x}=1\)
=>\(\dfrac{400x-300x-300}{x\left(x+1\right)}=1\)
=>x(x+1)=100x-300
=>x^2+x-100x+300=0
=>x^2-99x+300=0
=>\(\left[{}\begin{matrix}x\simeq95,87\\x\simeq3,13\end{matrix}\right.\)