\(\dfrac{300}{x}\) +1=\(\dfrac{400}{x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>\(\dfrac{400}{x+1}-\dfrac{300}{x}=1\)

=>\(\dfrac{400x-300x-300}{x\left(x+1\right)}=1\)

=>x(x+1)=100x-300

=>x^2+x-100x+300=0

=>x^2-99x+300=0

=>\(\left[{}\begin{matrix}x\simeq95,87\\x\simeq3,13\end{matrix}\right.\)

bài 1: giải các hệ phương trình 1)\(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)=\(\dfrac{1}{2}\) x+y=9 2) \(\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\) \(\dfrac{x+5}{2}-\dfrac{y+7}{3}=-4\) 3)\(2|x|-y=3\) \(|x|+y=3\) 4)\(2\left(x+y\right)+\sqrt{x+1}=4\) \(\left(x+y\right)-3\sqrt{x+1}=-5\) 5) \(\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\) \(\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\) 6)\(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\) \(\dfrac{2}{x}+\dfrac{4}{2y+1}=2\) 7)...
Đọc tiếp

bài 1: giải các hệ phương trình

1)\(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)=\(\dfrac{1}{2}\)

x+y=9

2) \(\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\)

\(\dfrac{x+5}{2}-\dfrac{y+7}{3}=-4\)

3)\(2|x|-y=3\)

\(|x|+y=3\)

4)\(2\left(x+y\right)+\sqrt{x+1}=4\)

\(\left(x+y\right)-3\sqrt{x+1}=-5\)

5) \(\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\)

\(\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\)

6)\(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\)

\(\dfrac{2}{x}+\dfrac{4}{2y+1}=2\)

7) \(\dfrac{1}{x}+\dfrac{1}{y}=2\)

\(\dfrac{3}{x}-\dfrac{1}{y}=2\)

8)\(\dfrac{1}{x+2}+\dfrac{3}{2y-1}=4\)

\(\dfrac{4}{x+2}-\dfrac{1}{2y-1}=3\)

9)\(\dfrac{4}{x+y} +\dfrac{1}{y-1}=5\)

\(\dfrac{1}{x+y}-\dfrac{2}{y-1}=-1\)

10)\(\dfrac{7}{\sqrt{2x+3}}-\dfrac{4}{\sqrt{3}-y}=\dfrac{5}{3}\)

\(\dfrac{5}{\sqrt{2x+3}}+\dfrac{3}{\sqrt{3-y}}=\dfrac{13}{6}\)

11)\(\dfrac{3x}{x-1}-\dfrac{2}{y+2}=4\)

\(\dfrac{2x}{x-1}+\dfrac{1}{y+2}=5\)

12) \(\dfrac{7}{\sqrt{x}-7}-\dfrac{4}{\sqrt{y}+6}=\dfrac{5}{3}\)

\(\dfrac{5}{\sqrt{x}-7}+\dfrac{3}{\sqrt{y}+6}2\dfrac{1}{6}\)

13) \(3\sqrt{x-1}+2\sqrt{y}=13\)

\(2\sqrt{x-1}-\sqrt{y}=4\)

14) 6x + 6y = 5xy

\(\dfrac{4}{x}-\dfrac{3}{y}=1\)

1
24 tháng 2 2018

mọi người giúp mk với gianroi

câu 6 sai nha

sửa : \(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\)

\(\dfrac{2}{x}+\dfrac{4}{2y+1}=3\)

a: \(P=\sqrt{x}\left(\dfrac{\sqrt{x}}{x^2-1}+\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{x-1}\right)-\dfrac{5x}{x^2-1}\)

\(=\sqrt{x}\left(\dfrac{\sqrt{x}}{x^2-1}+\dfrac{4\sqrt{x}}{x-1}\right)-\dfrac{5x}{x^2-1}\)

\(=\sqrt{x}\left(\dfrac{\sqrt{x}+4\sqrt{x}\left(x+1\right)}{\left(x^2-1\right)}\right)-\dfrac{5x}{x^2-1}\)

\(=\dfrac{x+4x\left(x+1\right)}{x^2-1}-\dfrac{5x}{x^2-1}\)

\(=\dfrac{x+4x^2+4x-5x}{x^2-1}\)

\(=\dfrac{4x^2}{x^2-1}\)

Khi x=4 thì \(P=\dfrac{4\cdot16}{16-1}=\dfrac{64}{15}\)

b: Để P/Q=0 thì P=0

=>x=0

12 tháng 5 2018

Đề bài sai: Khi \(x=4\) thì \(A=\dfrac{1}{2};B=\dfrac{28}{9};\dfrac{A}{B}=\dfrac{9}{56};\dfrac{x-2}{4\sqrt{x}}=\dfrac{1}{4}\Rightarrow\dfrac{A}{B}\ne\dfrac{x-2}{4\sqrt{x}}\)

19 tháng 2 2019

1 )Ta có :

\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}>\dfrac{1}{6}\)

\(\Rightarrow6\left(\sqrt{x}-2\right)>3\sqrt{x}\)

\(\Rightarrow6\sqrt{x}-3\sqrt{x}-2>0\)

\(\Rightarrow3\sqrt{x}>2\)

\(\Rightarrow\sqrt{x}>\dfrac{2}{3}\)

\(\Rightarrow x>\dfrac{4}{9}\)

2)

Giả sử

\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}>\dfrac{1}{3}\)

=> \(3\sqrt{x}>x+\sqrt{x}+1\)

\(\Rightarrow x+\sqrt{x}+1-3\sqrt{x}< 0\)

\(\Rightarrow\left(x-2\sqrt{x}+1\right)< 0\Leftrightarrow\left(\sqrt{x-1}\right)^2< 0\) ( vô lí )

Bất đẳng thức trên là sai, mà các phép biến dổi là tương đương

\(\Rightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}< \dfrac{1}{3}\)

19 tháng 2 2019

câu 2 tớ nhầm chỗ kết luận, phải là :

\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\le\dfrac{1}{3}\) nhé, chỗ dòng cuối cùng đấy, còn bên trên thì không ảnh hưởng gì cả

9 tháng 4 2018

\(A=B:C\)

\(C=\dfrac{x+\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\)

\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{1}{1-\sqrt{x}}+\dfrac{2-x}{x-\sqrt{x}}=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}.\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(\left\{{}\begin{matrix}x>0;\ne1\\A=\dfrac{x}{\sqrt{x}-1}\end{matrix}\right.\)

31 tháng 10 2018

\(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)=\left[\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\left[\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{x-1}{\sqrt{x}}\)

30 tháng 5 2018

a)

<=>(x-y)+(x-y)/xy≥0

(x-y)(1-1/xy)≥0

x,y≥1=> 1/(xy)≤1=(1-1/(xy)≥0

x≥y=>x-y≥0

=> (x-y)(1-1/xy)≥0 => dccm

dang thuc khi x=y

or x.y=1

10 tháng 11 2017

Đề là ntn:

\(A=49\left(\dfrac{1}{2.9}+\dfrac{1}{9.16}+\dfrac{1}{16.23}+...+\dfrac{1}{65.72}\right):\dfrac{1}{3}-\dfrac{7}{36}\)

\(A=7\left(\dfrac{1}{2}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{23}+...+\dfrac{1}{65}-\dfrac{1}{72}\right):\dfrac{1}{3}-\dfrac{7}{36}\)

\(A=7\left(\dfrac{1}{2}-\dfrac{1}{72}\right):\dfrac{1}{3}-\dfrac{7}{36}\)

\(A=7.\dfrac{35}{72}:\dfrac{1}{3}-\dfrac{7}{36}\)

\(A=\dfrac{245}{72}:\dfrac{1}{3}-\dfrac{7}{36}\)

\(A=\dfrac{735}{72}-\dfrac{7}{36}=\dfrac{735}{72}-\dfrac{14}{36}=\dfrac{721}{36}\)

10 tháng 11 2017

Đề là Thực hiện biến đổi toán học và kết hợp với máy tính . Tính số nghịch đảo của biểu thức ?