Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{27a^6b^3\cdot a^2b^6}{a^8b^8}=27b\)
b: \(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
c: \(=6x-y+2x^2+3y-2x^2+x\)
\(=7x+2y\)
d: \(=x-y+2y^2-6xy+\dfrac{10x^2}{y}\)
a: \(=3y^2-5x^2y^3-2y^2+3x^2y^3=y^2-2x^2y^3\)
b: \(=6x-y+2x^2+3y^2-2x^2+x=7x-y+3y^2\)
c: \(=x-y+4y^2-6xy+\dfrac{10x^2}{y}\)
\(a.\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
\(b.\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
\(=6x-y+2x^2+3y-2+x\)
\(=2x^2+7x+2y-2\)
\(c.\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^3\right):\dfrac{3}{2}x^2y^3\)
\(=x-y+4y^2-6xy+10x^2\)
1) \(\dfrac{x^2}{x+1}+\dfrac{2x}{x^2-1}-\dfrac{1}{1-x}+1\)
\(=\dfrac{x^2}{x+1}+\dfrac{2x}{x^2-1}+\dfrac{1}{x-1}+1\)
\(=\dfrac{x^2}{x+1}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}+\dfrac{1}{x-1}+1\) MTC: \(\left(x-1\right)\left(x+1\right)\)
\(=\dfrac{x^2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}+\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2\left(x-1\right)+2x+\left(x+1\right)+\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^3-x^2+2x+x+1+x^2-1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x\left(x^2+3\right)}{\left(x-1\right)\left(x+1\right)}\)
b) \(\dfrac{1}{x^3-x}-\dfrac{1}{\left(x-1\right)x}+\dfrac{2}{x^2-1}\)
\(=\dfrac{1}{x\left(x^2-1\right)}-\dfrac{1}{\left(x-1\right)x}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{1}{x\left(x-1\right)\left(x+1\right)}-\dfrac{1}{\left(x-1\right)x}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\) MTC: \(x\left(x-1\right)\left(x+1\right)\)
\(=\dfrac{1}{x\left(x-1\right)\left(x+1\right)}-\dfrac{x+1}{x\left(x-1\right)\left(x+1\right)}+\dfrac{2x}{x\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{1-\left(x+1\right)+2x}{x\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{1-x-1+2x}{x\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x}{x\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)
a/ \(\dfrac{3x^2y+5}{15x^3y^4}+\dfrac{3x^2y-5}{15x^3y^4}=\dfrac{3x^2y+5+3x^2y-5}{15x^3y^4}=\dfrac{6x^2y}{15x^3y^4}=\dfrac{2}{5xy^3}\)
b/ \(\dfrac{2x^2-x}{x^2+x+1}+\dfrac{x^3-2x^2+x+1}{x^2+x+1}=\dfrac{2x^2-x+x^3-2x^2+x+1}{x^2+x+1}=\dfrac{x^3+1}{x^2+x+1}\)
2)
a) \(\dfrac{1}{x}.\dfrac{6x}{y}\)
\(=\dfrac{6x}{xy}\)
\(=\dfrac{6}{y}\)
b) \(\dfrac{2x^2}{y}.3xy^2\)
\(=\dfrac{2x^2.3xy^2}{y}\)
\(=\dfrac{6x^3y^2}{y}\)
\(=6x^3y\)
c) \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}\)
\(=\dfrac{15x.2y^2}{7y^3.x^2}\)
\(=\dfrac{30xy^2}{7x^2y^3}\)
\(=\dfrac{30}{7xy}\)
d) \(\dfrac{2x^2}{x-y}.\dfrac{y}{5x^3}\)
\(=\dfrac{2x^2.y}{\left(x-y\right).5x^3}\)
\(=\dfrac{2y}{5x\left(x-y\right)}\)
1)
a) \(\dfrac{5x}{10}=\dfrac{x}{2}\)
b) \(\dfrac{4xy}{2y}=2x\left(y\ne0\right)\)
c) \(\dfrac{21x^2y^3}{6xy}=\dfrac{7xy^2}{2}\left(xy\ne0\right)\)
d) \(\dfrac{2x+2y}{4}=\dfrac{2\left(x+y\right)}{4}=\dfrac{x+y}{2}\)
e) \(\dfrac{5x-5y}{3x-3y}=\dfrac{5\left(x-y\right)}{3\left(x-y\right)}=\dfrac{5}{3}\left(x\ne y\right)\)
f) \(\dfrac{-15x\left(x-y\right)}{3\left(y-x\right)}=-5x\dfrac{x-y}{y-x}=-5x\dfrac{x-y}{-\left(x-y\right)}\)
\(=-5x.\left(-1\right)=5x\left(x\ne y\right)\)
2)
a) Nhớ ghi ĐK vào nhá, lười quá :V\(\dfrac{x^2-16}{4x-x^2}=-\dfrac{\left(x-4\right)\left(x+4\right)}{x^2-4x}=\dfrac{\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)}=\dfrac{x+4}{x}\)
b) \(\dfrac{x^2+4x+3}{2x+6}=\dfrac{x^2+3x+x+3}{2\left(x+3\right)}=\dfrac{x\left(x+3\right)+\left(x+3\right)}{2\left(x+3\right)}\)
\(=\dfrac{\left(x+3\right)\left(x+1\right)}{2\left(x+3\right)}=\dfrac{x+1}{2}\)
c) \(\dfrac{15x\left(x+3\right)^3}{5y\left(x+y\right)^2}=\dfrac{3x\left(x+3\right)^3}{y\left(x+y\right)^2}\) ( câu này có gì đó sai sai )
d) \(\dfrac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\dfrac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)
\(=\dfrac{8\left(x-y\right)}{10\left(x-y\right)}=\dfrac{8}{10}=\dfrac{4}{5}\)
e) \(\dfrac{2x+2y+5x+5y}{2x+2y-5x-5y}=\dfrac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)
\(=\dfrac{7\left(x+y\right)}{-3\left(x+y\right)}=-\dfrac{7}{3}\)
\(=\dfrac{30\left(x^3-y^3\right)\left(x^2-y^2\right)}{3\left(x+y\right)\left(x^2+xy+y^2\right)}=\dfrac{10\left(x-y\right)^2\left(x+y\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)\left(x^2+xy+y^2\right)}=10\left(x-y\right)^2\)