\(\dfrac{2x+1}{2x-1}\)-\(\dfrac{2x-1}{2x+1}\)):
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{4x^2+4x+1-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{5\left(2x-1\right)}{4x}\)

\(=\dfrac{8x}{4x}\cdot\dfrac{5}{2x+1}=\dfrac{10}{2x+1}\)

29 tháng 11 2017

a) \(\dfrac{4x-1}{3x^2y}-\dfrac{7x-1}{3x^2y}\)

\(=\dfrac{\left(4x-1\right)-\left(7x-1\right)}{3x^2y}\)

\(=\dfrac{4x-1-7x+1}{3x^2y}\)

\(=\dfrac{-3x}{3x^2y}\)

\(=\dfrac{-1}{xy}\)

b) \(\dfrac{4x+5}{2x-1}-\dfrac{5-9x}{2x-1}\)

\(=\dfrac{\left(4x+5\right)-\left(5-9x\right)}{2x-1}\)

\(=\dfrac{4x+5-5+9x}{2x-1}\)

\(=\dfrac{13x}{2x-1}\)

c) \(\dfrac{11x}{2x-3}-\dfrac{x-18}{3-2x}\)

\(=\dfrac{11x}{2x-3}+\dfrac{x-18}{2x-3}\)

\(=\dfrac{11x+\left(x-18\right)}{2x-3}\)

\(=\dfrac{11x+x-18}{2x-3}\)

\(=\dfrac{12x-18}{2x-3}\)

\(=\dfrac{6\left(2x-3\right)}{2x-3}\)

\(=\dfrac{6}{1}\)

\(=6\)

d) \(\dfrac{2x-7}{10x-4}-\dfrac{3x+5}{4-10x}\)

\(=\dfrac{2x-7}{10x-4}+\dfrac{3x+5}{10x-4}\)

\(=\dfrac{\left(2x-7\right)+\left(3x+5\right)}{10x-4}\)

\(=\dfrac{2x-7+3x+5}{10x-4}\)

\(=\dfrac{5x-2}{10x-4}\)

\(=\dfrac{5x-2}{2\left(5x-2\right)}\)

\(=\dfrac{1}{2}\)

21 tháng 4 2017

Giải bài 29 trang 50 Toán 8 Tập 1 | Giải bài tập Toán 8

25 tháng 11 2022

a: \(=\dfrac{1}{x+2y}+\dfrac{1}{x-2y}-\dfrac{4y}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{x-2y+x+2y-4y}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2\left(x-2y\right)}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2}{x+2y}\)

b: \(=\dfrac{2x}{x-1}+\dfrac{5\left(x-1\right)\left(x+1\right)}{\left(x+1\right)^2}\cdot\dfrac{2\left(x+1\right)}{5\left(1-x\right)}\)

\(=\dfrac{2x}{x-1}-2=\dfrac{2x-2x+2}{x-1}=\dfrac{2}{x-1}\)

c: \(=\dfrac{5\left(x-1\right)}{2x}\cdot\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{5\cdot4x}{2x\cdot\left(x+1\right)}=\dfrac{10}{x+1}\)

 

b: \(\Leftrightarrow\dfrac{2}{\left(x+7\right)\left(x-3\right)}=\dfrac{3x+21}{\left(x-3\right)\left(x+7\right)}\)

=>3x+21=2

=>x=-19/3

d: \(\Leftrightarrow\left(2x+1\right)^2-\left(2x-1\right)^2=8\)

\(\Leftrightarrow4x^2+4x+1-4x^2+4x-1=8\)

=>8x=8

hay x=1

1, Thực hiện phép tính : a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\) b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\) c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\) d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\) e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\) f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\) g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\) h, \(\dfrac{2}{x+y}\)...
Đọc tiếp

1, Thực hiện phép tính :

a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\)

b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\)

c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\)

d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\)

e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\)

f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\)

g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\)

h, \(\dfrac{2}{x+y}\) +\(\dfrac{1}{x-y}\) + \(\dfrac{-3x}{x^2-y^2}\)

i, x+y+ \(\dfrac{x^2+y^2}{x+y}\)

2, Thực hiện phép tính :

a, \(\dfrac{2x}{x^2+2xy}\) + \(\dfrac{y}{xy-2y^2}\)+ \(\dfrac{4}{x^2-4y^2}\)

b, \(\dfrac{1}{x-y}\) + \(\dfrac{3xy}{y^3-x^3}\) + \(\dfrac{x-y}{x^2+xy+y^2}\)

c, \(\dfrac{2x+y}{2x^2-xy}\) + \(\dfrac{16x}{y^2-4x^2}\) + \(\dfrac{2x-y}{2x^2+xy}\)

d, \(\dfrac{1}{1-x}\) +\(\dfrac{1}{1+x}\) + \(\dfrac{2}{1+x^2}\) + \(\dfrac{4}{1+x^4}\) + \(\dfrac{8}{1+x^8}\)+ \(\dfrac{16}{1+x^{16}}\)

1
13 tháng 11 2017

Bài 2 .

a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)

\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{2x^2y-2xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{3x^2y+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

b) Sai đề hay sao ý

c) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)

\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-16x}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{2x-y}{x\left(2x+y\right)}\)

\(=\dfrac{\left(2x+y\right)^2-16x^2+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{4x^2+4xy+y^2-16x^2+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{-8x^2}{x\left(2x-y\right)\left(2x+y\right)}\)

d) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

.....

\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{32}{1-x^{32}}\)

13 tháng 8 2018

giải bất phương trình

a: =>-4x>16

=>x<-4

c: =>20x-25<=21-3x

=>23x<=46

=>x<=2

d: =>20(2x-5)-30(3x-1)<12(3-x)-15(2x-1)

=>40x-100-90x+30<36-12x-30x+15

=>-50x-70<-42x+51

=>-8x<121

=>x>-121/8

21 tháng 4 2017

a) (2x+12x−1−2x−12x+1):4x10x−5=(2x+1)2−(2x−1)2(2x−1)(2x+1).10x+54x(2x+12x−1−2x−12x+1):4x10x−5=(2x+1)2−(2x−1)2(2x−1)(2x+1).10x+54x

=4x2+4x+1−4x2+4x−1(2x−1)(2x+1).5(2x+1)4x4x2+4x+1−4x2+4x−1(2x−1)(2x+1).5(2x+1)4x

=8x.5(2x+1)(2x−1)(2

29 tháng 11 2018

b) \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)=\left(\dfrac{1}{x\left(x+1\right)}-\dfrac{x\left(2-x\right)}{x\left(x+1\right)}\right):\left(\dfrac{1}{x}+\dfrac{x^2}{x}-\dfrac{2x}{x}\right)=\left(\dfrac{1-2x+x^2}{x\left(x+1\right)}\right):\left(\dfrac{1+x^2-2x}{x}\right)=\left(\dfrac{\left(x-1\right)^2}{x\left(x+1\right)}\right)\cdot\left(\dfrac{x}{\left(x-1\right)^2}\right)=\dfrac{\left(x-1\right)^2\cdot x}{\left(x-1\right)^2\cdot x\cdot\left(x+1\right)}=\dfrac{1}{x+1}\)

1 tháng 5 2017

ai giải giúp mk vs đg cần gấp

30 tháng 4 2017

bài này đề bài là chứng minh hay là giải bất phương trình vậy bạn

1 tháng 5 2017

giả pt á b

31 tháng 1 2019

\(\left(\dfrac{2x}{2x+y}-\dfrac{4x^2}{4x^2+4xy+y^2}\right):\left(\dfrac{2x}{4x^2-y^2}+\dfrac{1}{y-2x}\right)\)

=\(\left[\dfrac{2x}{2x+y}-\dfrac{4x^2}{\left(2x+y\right)^2}\right]:\left[\dfrac{2x}{\left(2x-y\right)\left(2x+y\right)}-\dfrac{1}{2x-y}\right]\)

\(=\left[\dfrac{2x\left(2x+y\right)}{\left(2x+y\right)^2}-\dfrac{4x^2}{\left(2x+y\right)^2}\right]:\left[\dfrac{2x}{\left(2x-y\right)\left(2x+y\right)}-\dfrac{y+2x}{\left(2x-y\right)\left(y+2x\right)}\right]\)

\(=\left[\dfrac{4x^2+2xy-4x^2}{\left(2x+y\right)^2}\right]:[\dfrac{2x-y-2x}{\left(2x-y\right)\left(2x+y\right)}]\)

\(=\dfrac{2xy}{\left(2x+y\right)^2}:\dfrac{-y}{\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{2xy\left(2x-y\right)\left(2x+y\right)}{\left(2x+y\right)\left(2x+y\right)\left(-y\right)}\)

\(=\dfrac{2x\left(2x-y\right)}{-\left(2x+y\right)}\)

\(\dfrac{4x^2-2xy}{-2x-y}\)