\(\dfrac{2x - 1}{3} = \dfrac{-5}{0,6}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2021

\(\dfrac{2x-1}{3}=\dfrac{-5}{0,6}\)

\(0,6\left(2x-1\right)=3.-5\)

\(1,2x-0,6=-15\)

\(1,2x=-14,4\)

\(x=-12\)

28 tháng 9 2021

chi tiết ?

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

a)

ĐKXĐ: \(2x\geq 0\Leftrightarrow x\geq 0\)

Vậy TXĐ của $x$ là \(D= [0;+\infty)\)

b)

ĐK: \((2x-1)(x+3)\neq 0\Leftrightarrow \left\{\begin{matrix} 2x-1\neq 0\\ x+3\neq 0\end{matrix}\right.\Leftrightarrow \Leftrightarrow \left\{\begin{matrix} x\neq \frac{1}{2}\\ x\neq -3\end{matrix}\right.\)

Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{1}{2}; -3\right\}\)

c)

ĐK: \(8x^3+1\neq 0\Leftrightarrow x^3\neq \frac{-1}{8}\Leftrightarrow x\neq \frac{-1}{2}\)

Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{-1}{2}\right\}\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

d)

ĐK:

\(|x-2015|+1\neq 0\Leftrightarrow |x-2015|\neq -1\Leftrightarrow x\in\mathbb{R}\)

Vậy TXĐ \(D=\mathbb{R}\)

e)

ĐK: \(\left\{\begin{matrix} |x-1,2|\neq 0\\ 2x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 1,2\\ x\neq 2,5\end{matrix}\right.\)

Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{1,2; 2,5\right\}\)

f)

ĐK: \(x^2-4\neq 0\Leftrightarrow (x-2)(x+2)\neq 0\Leftrightarrow x\neq \pm 2\)

Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{\pm 2\right\}\)

25 tháng 10 2017

a,|x213x2−13| = 3232

b, 321232−12 ( 2x-1)=3434

c, |x-1|+2x=2

25 tháng 10 2017

a)\(\left|\dfrac{x}{2}-\dfrac{1}{3}\right|=\dfrac{3}{2}\)

TH1

\(\dfrac{x}{2}-\dfrac{1}{3}=\dfrac{3}{2}\)

=>\(\dfrac{x}{2}=\dfrac{11}{6}\)

=>x=\(\dfrac{11.2}{6}\)

=>x=\(\dfrac{11}{3}\)

TH2

\(\dfrac{x}{2}-\dfrac{1}{2}=-\dfrac{3}{2}\)

=>\(\dfrac{x}{2}=-\dfrac{3}{2}+\dfrac{1}{2}\)

=>\(\dfrac{x}{2}=-1\)

=>x=-2

1 tháng 11 2017

a. Áp dụng t/c dãy tỉ sô bằng nhau ta có :

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{3y}{12}=\dfrac{x-3y}{3-12}=\dfrac{36}{-9}=-4\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=-4\Rightarrow x=-12\\\dfrac{y}{4}=-4\Rightarrow y=-16\end{matrix}\right.\)

Vậy.............

b. Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x+3y}{4+9}=\dfrac{39}{13}=3\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=3\Rightarrow x=6\\\dfrac{y}{3}=3\Rightarrow y=9\end{matrix}\right.\)

Vậy.........

c. Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{4x}{12}=\dfrac{3y}{15}=\dfrac{4x-3y}{12-15}=\dfrac{12}{-3}=-4\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=-4\Rightarrow x=-12\\\dfrac{y}{5}=-4\Rightarrow y=-20\end{matrix}\right.\)

Vậy............

1 tháng 11 2017

a, \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{3}=\dfrac{3y}{12}\)

Áp dụng t/c dãy tỉ số = nhau ,ta có :

\(\dfrac{x}{3}=\dfrac{3y}{12}=\dfrac{x-3y}{3-12}=\dfrac{36}{-9}=-4\)

\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=-4\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-16\end{matrix}\right.\)

Vậy ...

b,c tương tự

5 tháng 7 2017

ai giúp mình với nhanh lên các bạn

a: \(=\dfrac{2}{3}\left(\dfrac{3}{60\cdot63}+\dfrac{3}{63\cdot66}+...+\dfrac{3}{117\cdot120}\right)+\dfrac{2}{2006}\)

\(=\dfrac{2}{3}\left(\dfrac{1}{60}-\dfrac{1}{63}+...+\dfrac{1}{117}-\dfrac{1}{120}\right)+\dfrac{2}{2006}\)

\(=\dfrac{2}{3}\cdot\dfrac{1}{120}+\dfrac{1}{2003}=\dfrac{1}{180}+\dfrac{1}{2003}=\dfrac{2183}{180\cdot2003}\)

b: \(=\dfrac{5}{4}\left(\dfrac{4}{40\cdot44}+\dfrac{4}{44\cdot48}+...+\dfrac{4}{76\cdot80}\right)+\dfrac{5}{2006}\)

\(=\dfrac{5}{4}\left(\dfrac{1}{40}-\dfrac{1}{80}\right)+\dfrac{5}{2006}\)

\(=\dfrac{5}{4}\cdot\dfrac{1}{80}+\dfrac{5}{2006}=\dfrac{1}{64}+\dfrac{5}{2006}=\dfrac{1163}{64192}\)

c: \(=\dfrac{1}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}+\dfrac{3}{17\cdot20}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{20}\right)=\dfrac{1}{3}\cdot\dfrac{9}{20}=\dfrac{3}{20}\)

 

20 tháng 8 2017

a, \(2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=1\dfrac{2}{5}\)

\(\Rightarrow\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{10}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=-\dfrac{7}{10}\\\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{10}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{11}{15}\\x=\dfrac{31}{15}\end{matrix}\right.\)

b, \(\left|\dfrac{1}{4}x-2\dfrac{1}{5}\right|=\left|0,6-\dfrac{2}{3}x\right|\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{4}x-2\dfrac{1}{5}=\dfrac{2}{3}x-0,6\\\dfrac{1}{4}x-2\dfrac{1}{5}=0,6-\dfrac{2}{3}x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{4}x-\dfrac{2}{3}x=-0,6+2\dfrac{1}{5}\\\dfrac{1}{4}x+\dfrac{2}{3}x=0,6+2\dfrac{1}{5}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{5}{12}x=1,6\\\dfrac{11}{12}x=2,8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3,84\\x=\dfrac{168}{55}\end{matrix}\right.\)

c, \(\left|2x-\dfrac{1}{3}\right|=x+\dfrac{1}{2}\)

+, Xét \(x\ge\dfrac{1}{6}\) thì \(2x-\dfrac{1}{3}\ge0\Rightarrow\left|2x-\dfrac{1}{3}\right|=2x-\dfrac{1}{3}\)

Thay vào ta có:

\(2x-\dfrac{1}{3}=x+\dfrac{1}{2}\Rightarrow x=\dfrac{5}{6}\)(chọn vì thoả mãn điều kiện \(x\ge\dfrac{1}{6}\))

+, Xét \(x< \dfrac{1}{6}\) thì \(2x-\dfrac{1}{3}< 0\Rightarrow\left|2x-\dfrac{1}{3}\right|=\dfrac{1}{3}-2x\)

Thay vào ta có:

\(\dfrac{1}{3}-2x=x+\dfrac{1}{2}\Rightarrow3x=-\dfrac{1}{6}\Rightarrow x=-\dfrac{1}{18}\)(chọn vì thoả mãn điều kiện \(x< \dfrac{1}{6}\))

Vậy.............

Chúc bạn học tốt!!!

1 tháng 1 2018

\(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\) (1)

\(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\) (2)

Từ (1) và (2) suy ra \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)

\(\Rightarrow\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x+5y-2z}{14+100-64}=\dfrac{100}{50}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.7=14\\y=2.20=40\\z=2.32=64\end{matrix}\right.\)

Vậy...

5 tháng 6 2018

Ta có : \(\dfrac{x}{y}\) = \(\dfrac{7}{20}\) \(\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\) ( 1)

Ta có : \(\dfrac{y}{z}=\dfrac{5}{8}\) \(\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\)

\(\Rightarrow\dfrac{y}{5}.\dfrac{1}{4}=\dfrac{z}{8}.\dfrac{1}{4}\)

\(\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\) (2)

Từ (1) và (2)

\(\Rightarrow\) \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)

Đặt \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=k\)

\(\Rightarrow x=7k\) ; \(y=20k\) ; \(z=32k\)

Thay \(x=7k\) ; \(y=20k\) ; \(z=32k\) vào \(2x+5y-2z=100\)

\(\Rightarrow2.\left(7k\right)+5.\left(20k\right)-2.\left(32k\right)\) \(=100\)

\(\Rightarrow\)\(14k+100k-64k=100\)

\(\Rightarrow k.\left(14+100-64\right)=100\)

\(\Rightarrow k.50=100\)

\(\Rightarrow k=100:50\) \(\Rightarrow k=2\)

\(\Rightarrow x=7k=7.2=14\)

\(\Rightarrow y=20k=20.2=40\)

\(\Rightarrow z=32k=32.2=64\)

Vậy \(x=14\) ; \(y=40\) ;\(z=64\)

27 tháng 1 2020

Bài 1:

\(\frac{1}{8}.16^n=2^n\)

\(\Rightarrow\frac{16^n}{8}=2^n\)

\(\Rightarrow\frac{\left(2^4\right)^n}{2^3}=2^n\)

\(\Rightarrow\frac{2^{4n}}{2^3}=2^n\)

\(\Rightarrow2^{4n-3}=2^n\)

\(\Rightarrow4n-3=n\)

\(\Rightarrow4n-n=3\)

\(\Rightarrow3n=3\)

\(\Rightarrow n=3:3\)

\(\Rightarrow n=1\left(TM\right).\)

Vậy \(n=1.\)

Bài 3:

a) \(\left|2x+3\right|=x+2\)

\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-x=2-3\\2x+x=-2-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}1x=-1\\3x=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\left(-1\right):1\\x=\left(-5\right):3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{5}{3}\end{matrix}\right.\)

Vậy \(x\in\left\{-1;-\frac{5}{3}\right\}.\)

Chúc bạn học tốt!

27 tháng 1 2020

Bài 3:

b) \(A=\left|x-2006\right|+\left|2007-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A=\left|x-2006\right|+\left|2007-x\right|\ge\left|x-2006+2007-x\right|\)

\(\Rightarrow A\ge\left|1\right|\)

\(\Rightarrow A\ge1.\)

Dấu '' = '' xảy ra khi:

\(\left(x-2006\right).\left(2007-x\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2006\ge0\\2007-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2006\le0\\2007-x\le0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2006\\x\le2007\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2006\\x\ge2007\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2006\le x\le2007\\x\in\varnothing\end{matrix}\right.\)

Vậy \(MIN_A=1\) khi \(2006\le x\le2007.\)

Chúc bạn học tốt!

12 tháng 7 2017

Ta có:

\(a=\left|-\dfrac{1}{3}\right|=\dfrac{1}{3}\)

Thay vào biểu thức đề bài ta được:

\(A=a-b+c=\dfrac{1}{3}-\dfrac{5}{4}+\dfrac{-1}{5}\)

\(=-\dfrac{67}{60}\)

Chúc bạn học tốt!!!

12 tháng 7 2017

sao khó z