![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,
\(\dfrac{4^2\cdot4^3}{2^{10}}=\dfrac{4^5}{2^{10}}=\dfrac{\left(2^2\right)^5}{2^{10}}=\dfrac{2^{10}}{2^{10}}=1\)
b,
\(\dfrac{\left(0,6\right)^5}{\left(0,2\right)^6}=\dfrac{\left(0,2\cdot3\right)^5}{\left(0,2\right)^5\cdot0,2}=\dfrac{\left(0,2\right)^5\cdot3^5}{\left(0,2\right)^5\cdot0,2}=\dfrac{243}{0,2}=\dfrac{243}{\dfrac{1}{5}}=243\cdot5=1215\)
c,
\(\dfrac{2^7\cdot9^3}{6^5\cdot8^2}=\dfrac{2^7\cdot\left(3^2\right)^3}{\left(2\cdot3\right)^5\cdot\left(2^3\right)^2}=\dfrac{2^6\cdot2\cdot3^6}{2^5\cdot3^5\cdot2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
d,
\(\dfrac{6^3+3\cdot6^2+3^3}{-13}=\dfrac{\left(2\cdot3\right)^3+3\cdot\left(2\cdot3\right)^2+3^3}{-13}=\dfrac{2^3\cdot3^3+3\cdot2^2\cdot3^2+3^3}{-13}=\dfrac{2^3\cdot3^3+2^2\cdot3^3+3^3}{-13}\dfrac{3^3\left(2^3+2^2+1\right)}{-13}=\dfrac{3^3\cdot13}{-13}=-3^3=-27\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\dfrac{4^2.4^3}{(2^2)^5}=\dfrac{4^2.4^3}{4^5}=\dfrac{4^3}{4^3}=1\)
b) = 1215
c) = \(\dfrac{3}{16}\)
d) = (-27)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{5^4.2^8.5^4}{5^{10}.2^{10}}=\dfrac{1}{5^2.2^2}=\dfrac{1}{25.4}=\dfrac{1}{100}\)
b, \(\dfrac{2^7.9^3}{6^5.8^2}=\dfrac{2^7.3^6}{2^5.3^5.2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
c, \(\dfrac{45^{10}.5^{20}}{75^5}=\dfrac{5^{10}.3^{20}.5^{20}}{3^5.5^{10}}=5^{20}.3^{15}\)
d, \(\left(0,8\right)^5=\left(0,1\right)^5.8^5=\dfrac{1}{100000}.32768=0,32768\)
e, \(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.3^8}{2^6.3^6.2^9}=3^2=9\)
d, \(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}.\left(2^{20}+1\right)}{2^{30}.\left(2^{20}+1\right)}=2^{10}=1024\)
Chúc bạn học tốt!!!
\(\text{a) }\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{5^4\cdot\left(5\cdot4\right)^4}{\left(5^2\right)^5\cdot4^5}=\dfrac{5^4\cdot5^4\cdot4^4}{5^{10}\cdot4^5}=\dfrac{5^8\cdot4^4}{5^{10}\cdot4^5}=\dfrac{1}{5^2\cdot4}=\dfrac{1}{25\cdot4}=\dfrac{1}{100}\)
\(\text{b) }\dfrac{2^7\cdot9^3}{6^5\cdot8^2}=\dfrac{2^7\cdot\left(3^2\right)^3}{\left(2\cdot3\right)^5\cdot\left(2^3\right)^2}=\dfrac{2^7\cdot3^6}{2^5\cdot3^5\cdot2^6}=\dfrac{2^7\cdot3^6}{2^5\cdot2^6\cdot3^5}=\dfrac{2^7\cdot3^6}{2^{11}\cdot3^5}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
\(\text{c) }\dfrac{45^{10}\cdot5^{20}}{75^5}=\dfrac{\left(5\cdot9\right)^{10}\cdot5^{20}}{\left(25\cdot3\right)^5}=\dfrac{5^{10}\cdot9^{10}\cdot5^{20}}{25^5\cdot3^5}=\dfrac{5^{10}\cdot5^{20}\cdot\left(3^2\right)^{10}}{\left(5^2\right)^5\cdot3^5}=\dfrac{5^{30}\cdot3^{20}}{5^{10}\cdot3^5}=5^{20}\cdot3^{15}\)
\(\text{d) }\left(0.8\right)^5=\left(\dfrac{8}{10}\right)^5=\left(\dfrac{4}{5}\right)^5=\dfrac{4^5}{5^5}=\dfrac{64}{3125}\)
\(\text{e) }\dfrac{2^{15}\cdot9^4}{6^6\cdot8^3}=\dfrac{2^{15}\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^6\cdot\left(2^3\right)^3}=\dfrac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=\dfrac{2^{15}\cdot3^8}{2^6\cdot2^9\cdot3^6}=\dfrac{2^{15}\cdot3^8}{2^{15}\cdot3^6}=3^2=9\)
\(f\text{) }\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mik bik câu này nè . Bn tách 0,6ra thành 0,2.3 R bn tách tiếp ra thành (0,2)^5 còn 3 thì thành 3^5 bn rút gọn (0,2)^5 vs mũ 6thif còn lại 1 và 0,2 Ở trên bn có 3^5 ơn dưới có 0,2 bn tính 3^5 ra r rút gọn cho 0,2 Máy mik ko viết phân số đc nên p viết lời
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,25^3:5^2=\left(5^2\right)^3:5^2=5^6:5^2=5^4\)
\(b,\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^6=\)\(\left(\dfrac{3^{21}}{7^{21}}\right):\left(\dfrac{9^6}{49^6}\right)=\dfrac{3^{21}:7^{21}}{9^6:49^6}=\dfrac{3^{21}:7^{21}}{\left(3^2\right)^6:\left(7^2\right)^6}=\dfrac{3^{21}:7^{21}}{3^{12}:7^{12}}=3^9:7^9=\dfrac{3^9}{7^9}=\left(\dfrac{3}{7}\right)^9\)
\(c,\dfrac{4^2.43}{210}=\dfrac{\left(2^2\right)^2.43}{7.3.2.5}=\dfrac{2^4.43}{7.3.2.5}=\dfrac{2^3.43}{7.3.5}=\dfrac{344}{105}\)
\(d,\dfrac{2^7.9^3}{6^5.8^2}=\dfrac{2^7.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\dfrac{2^7.3^6}{2^5.3^5.2^6}\) =\(\dfrac{2^7.3^6}{2^{11}.3^5}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
0,2 . \(\sqrt{100}\) - \(\sqrt{\dfrac{16}{25}}\)
= 0,2 . 10 - \(\dfrac{4}{5}\)
= 2 - \(\dfrac{4}{5}\)
= \(\dfrac{6}{5}\)
1/ \(0,2.\sqrt{100}-\sqrt{\dfrac{16}{25}}\)
\(=0,2.10-0,8\)
\(=2-0,8=1,2\)
2/ \(\dfrac{2^7.9^3}{6^5.8^2}\)
\(=\dfrac{93312}{497664}=\dfrac{3}{16}=0,1875\)
3/ \(\sqrt{0,01}-\sqrt{0,25}\)
\(=0,1-0,5\)
\(=-0,4\)
4/ \(0,5.\sqrt{100}-\sqrt{\dfrac{1}{4}}\)
\(=0,5.10-0,5\)
\(=5-0,5=4,5\)
5/ \(7.\sqrt{0,01}+2.\sqrt{0,25}\)
\(=7.0,1+2.0,5\)
\(=0,7+1=1,7\)
6/ \(0,5.\sqrt{100}-\sqrt{\dfrac{1}{25}}\)
\(=0,5.10-0,2\)
\(=5-0,2=4,8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,
\(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\\ =1\cdot\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\\ =\left(2-1\right)\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\\ =\left(2-1\right)\cdot\dfrac{1}{2^2}+\left(2-1\right)\cdot\dfrac{1}{2^3}+...+\left(2-1\right)\cdot\dfrac{1}{2^{2006}}\\ =\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{2005}}-\dfrac{1}{2^{2006}}\\ =\dfrac{1}{2}-\dfrac{1}{2^{2006}}\\ =\dfrac{2^{2005}}{2^{2006}}-\dfrac{1}{2^{2006}}\\ =\dfrac{2^{2005}-1}{2^{2006}}\)
b,
\(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{59\cdot61}\\ =\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\\ =\dfrac{1}{5}-\dfrac{1}{61}\\ =\dfrac{56}{305}\)
c,
\(\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\\ =\dfrac{7}{2}\cdot\left(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{9999}\right)\\ =\dfrac{7}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{7}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{7}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{7}{2}\cdot\dfrac{100}{101}\\ =\dfrac{350}{101}\)
Đặt:
\(X=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)
\(2X=2\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\)
\(2X=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)
\(2X-X=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)\(X=\dfrac{1}{2}-\dfrac{1}{2^{2016}}\)
\(Y=\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+...+\dfrac{2}{59.61}\)
\(Y=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+...+\dfrac{1}{59}-\dfrac{1}{61}\)
\(Y=\dfrac{1}{5}-\dfrac{1}{61}=\dfrac{56}{305}\)
\(Z=\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\)
\(Z=\dfrac{7}{1.3}+\dfrac{7}{3.5}+\dfrac{7}{5.7}+...+\dfrac{7}{99.101}\)
\(Z=\dfrac{7}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(Z=\dfrac{7}{2}\left(1-\dfrac{1}{101}\right)\)
\(Z=\dfrac{7}{2}.\dfrac{100}{101}=\dfrac{700}{202}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. = 1/20 + 5 - 1/2
= 101/20 - 1/2
= 91/20
b. = ( 6/15 - 3/5) - ( 7/8 + 2/16) + 3
= -1/5 - 1 + 3
= 9/5
c. = 15/7 . ( 3/5 - 8/5)
= 15/7 . ( -1)
= - 15/7
e. = -14/9 - 3/9
= -17/9
f. = 19/21 . ( 15/17 + 2/17) + 13/21
= 19/21 . 1 + 13/21
= 32/21
g. = 43/12 : 2 + 5/24
= 43/24 + 5/24
= 2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\dfrac{4^2.4^3}{2^{10}}\)
Hướng dẫn:
- Đưa các lũy thừa trên tử số về cơ số có dạng giống mẫu số
\(=\dfrac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}\)
- Dùng tính chất \(\left(a^n\right)^m=a^{n.m}\) để làm
\(=\dfrac{2^4.2^6}{2^{10}}\)
- Gộp các lũy thừa cùng cơ số lại, dùng tính chất \(a^m.a^n=a^{m+n}\)
\(=\dfrac{2^{10}}{2^{10}}\)
- Chia tử và mẫu cho nhau, dùng tính chất \(a^m:a^n=a^{m-n}\)
\(=1\)
b) \(\dfrac{2^7.9^3}{6^5.8^2}\)
Hướng dẫn:
- Đưa lũy thừa ở tử và mẫu về cơ số nhỏ nhất ( Đưa về cơ số 2 và 3 )
\(=\dfrac{2^7.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}\)
- Dùng tính chất \(\left(a^m\right)^n=a^{m.n}\) và \(\left(a.b\right)^m=a^m.b^m\)
\(=\dfrac{2^7.3^6}{2^5.3^5.2^6}\)
- Dùng tính chất \(a^m.a^n=a^{m+n}\) để gộp các lũy thừa có cùng cơ số
\(=\dfrac{2^7.3^6}{2^{11}.3^5}\)
- Chia tử và mẫu cho nhau theo cách rút gọn những số giống nhau ở trên tử và mẫu
\(=\dfrac{3}{2^4}\)
\(=\dfrac{3}{16}\)
c) \(\dfrac{5^4.20^4}{25^5.4^5}\)
Hướng dẫn:
- Đưa các lũy thừa của tử và mẫu về cơ số nhỏ nhất ( Cơ số 2 và 5 )
\(=\dfrac{5^4.\left(2^2.5\right)^4}{\left(5^2\right)^5.\left(2^2\right)^5}\)
- Dùng tính chất \(\left(a^m\right)^n=a^{m.n}\) và \(\left(a.b\right)^m=a^m.b^m\)
\(=\dfrac{5^4.\left(2^2\right)^4.5^4}{5^{10}.2^{10}}\)
- Dùng tính chất \(a^m.a^n=a^{m+n}\)
\(=\dfrac{5^8.2^8}{5^{10}.2^{10}}\)
- Rút gọn
\(=\dfrac{1}{5^2.2^2}\)
\(=\dfrac{1}{100}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{2^7.9^2}{3^3.2^5}\)
\(=\dfrac{2^7.\left(3^2\right)^2}{3^3.2^5}\)
\(=\dfrac{2^7.3^4}{3^3.2^5}\)
\(=2^2.3\)
\(=4.3\)
\(=12\)
\(\dfrac{2^7.9^2}{3^3.2^5}=\dfrac{2^7.\left(3^2\right)^2}{3^3.2^5}=\dfrac{2^7.3^4}{3^3.2^5}=\dfrac{2^2.3}{1}=4.3=12\)
\(\dfrac{2^7\cdot9^3}{6^5\cdot8^2}\)
\(=\dfrac{2^7\cdot\left(3^2\right)^3}{2^5\cdot3^5\cdot\left(2^3\right)^2}\)
\(=\dfrac{2^7\cdot3^6}{2^{11}\cdot3^5}\)
\(=\dfrac{1\cdot3}{2^4\cdot1}\)
\(=\dfrac{3}{16}\)
\(=\dfrac{2^7\cdot3^6}{2^5\cdot3^5\cdot2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)