Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\)\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)
\(B=\frac{3.1+3.11+3.111+3.1111+3.11111}{4.1+4.11+4.111+4.1111+4.11111}\)
\(B=\frac{3.\left(1+11+111+1111+11111\right)}{4.\left(1+11+111+1111+11111\right)}\)
\(B=\frac{3}{4}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(A.2=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right).2\)
\(A.2=\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
=>\(A.2-A=\left(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\right)-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right)\)
\(A=\frac{2}{3}-\frac{1}{192}\)
\(A=\frac{127}{192}\)
\(\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
Đặt \(C=\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
\(C=\frac{1995.1990.1997.1993.997}{1997.1993.1994.1995.995}\)
\(C=\frac{1990.997}{1994.995}\)
\(C=\frac{995.2+997}{997.2+995}=1\)
\(B=\frac{3+33+333+3333+ 33333}{4+44+444+4444+44444}\)
\(\Rightarrow B=\frac{3\left(1+11+111+1111+11111\right)}{4\left(1+11+111+1111+11111\right)}=\frac{3}{4}\)
( 12/26 + 5/8 ) + 7/13
= 12/26 + 5/8 + 7/13
= 5/8 + 12/26 + 7/13
= 5/8 + 12/26 + 14/26
= 5/8 + 1
= 13/8
( \(\frac{12}{26}+\frac{5}{8}\) )+\(\frac{7}{13}\)
= \(\frac{6}{13}+\frac{5}{8}\)+\(\frac{7}{13}\)
=( \(\frac{6}{13}+\frac{7}{13}\))+ \(\frac{5}{8}\)
=1+\(\frac{5}{8}\)
=\(1\frac{5}{8}=\frac{13}{8}\)
\(a,\frac{26}{60}+\frac{3}{15}=\frac{13}{30}+\frac{1}{5}=\frac{13}{30}+\frac{6}{30}=\frac{19}{30}\)
\(b,\frac{4}{26}+\frac{33}{78}=\frac{2}{13}+\frac{11}{26}=\frac{4}{26}+\frac{11}{26}=\frac{15}{26}\)
\(c,\frac{25}{40}-\frac{3}{12}=\frac{5}{8}-\frac{1}{4}=\frac{5}{8}-\frac{2}{8}=\frac{3}{8}\)
\(d,\frac{21}{27}+\frac{10}{54}+\frac{5}{15}=\frac{7}{9}+\frac{5}{27}+\frac{1}{3}=\frac{21}{27}+\frac{5}{27}+\frac{9}{27}=\frac{35}{27}\)
~Study well~
#Thạc_Trân
\(\frac{33}{2}+\frac{33}{6}+\frac{33}{18}+\frac{33}{54}+\frac{33}{162}+\frac{33}{486}\)
\(=\frac{33.3+33.3+33.3+33.3+33.3}{486}\)
\(=\frac{99.5}{486}\)
\(=\frac{495}{486}\)
Gọi \(A=\frac{33}{2}+\frac{33}{6}+...+\frac{33}{486}\)
\(A=33.\left[\left(\frac{1}{1.2}+\frac{1}{2.3}\right)+\left(\frac{1}{3.6}+\frac{1}{6.9}\right)\left(\frac{1}{9.18}+\frac{1}{18.27}\right)\right]\)
\(A=33.\left[\frac{2}{3}+\frac{2}{9}+\frac{2}{27}\right]\)
\(A=66.\left[\frac{9}{27}+\frac{3}{27}+\frac{1}{27}\right]\)
\(A=66.\frac{13}{27}\)
\(A=\frac{286}{9}\)
sai hay đúng cx ko biết nha
\(S=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{20.22}\)
\(2S=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{20.22}\)
\(2S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{20}-\frac{1}{22}\)
\(2S=1-\frac{1}{22}=\frac{21}{22}\)
\(S=\frac{21}{22}:2=\frac{21}{44}\)
Đặt biểu thức trên là A ta có:
A = \(\frac{1}{3}\)+ \(\frac{1}{6}\)+ \(\frac{1}{12}\)+ \(\frac{1}{24}\)+ \(\frac{1}{48}\)+ \(\frac{1}{96}\)
A x 3 = \(1\)+ \(\frac{1}{2}\)+ \(\frac{1}{4}\)+ \(\frac{1}{8}\)+ \(\frac{1}{16}\)+ \(\frac{1}{32}\)
A x 3 = \(1\)+ \(1\)- \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{8}\)+ \(\frac{1}{8}\)- \(\frac{1}{16}\)+ \(\frac{1}{16}\)- \(\frac{1}{32}\)
A x 3 = 2 - \(\frac{1}{32}\)= \(\frac{63}{32}\)
A = \(\frac{63}{32}\): 3 = \(\frac{63}{96}\)
\(\frac{26.27-212}{26.25+200}\)= \(\frac{702-212}{650+200}\)=\(\frac{490}{850}\)=\(\frac{49}{85}\)
nho k nhe
`@Neo`
\(\dfrac{25\times17-24}{26+15\times25}\)
\(=\dfrac{25\times15+25\times2-24}{26+15\times25}\)
\(=\dfrac{25\times15+50-24}{26+15\times25}\)
\(=\dfrac{25\times15+26}{26+15\times25}=1\)