\(\dfrac{2}{3.5}+\dfrac{2}{5.7}\dfrac{2}{7.9}+.........+\dfrac{2}{99.101}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2021

Đặt A=\(\dfrac{2}{3.5}.\dfrac{2}{7.9}.....\dfrac{2}{99.101}\)

A=\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

A=\(\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}\)

Ta có: \(P=\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\)

\(=\dfrac{1}{3}-\dfrac{1}{15}\)

\(=\dfrac{4}{15}\)

24 tháng 6 2017

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+.....+\dfrac{1}{13}-\dfrac{1}{15}\)

(do \(\dfrac{n}{a.\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với \(a\in N\)*)

\(=\dfrac{1}{3}-\dfrac{1}{15}=\dfrac{4}{15}\)

Chúc bạn học tốt!!!

24 tháng 6 2017

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}\)

= \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}\)

= \(\dfrac{1}{3}-\dfrac{1}{15}\)

= \(\dfrac{4}{15}\)

5 tháng 4 2017

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{39}\)

\(=(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13})+\dfrac{2}{39}\)

\(=(\dfrac{1}{3}-\dfrac{1}{13})+\dfrac{2}{39}\)

\(=\dfrac{10}{39}+\dfrac{2}{39}\)

\(=\dfrac{4}{13}\)

5 tháng 4 2017

gọi biểu thức đó là A

A=\(1.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{11}-\dfrac{1}{13}\right)+\dfrac{2}{39}\)

A= \(\left(\dfrac{1}{3}-\dfrac{1}{13}\right)+\dfrac{2}{39}=\dfrac{4}{13}\)

mk nhanh nhất nha bạn

3 tháng 4 2018

a)

\(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{24.25}\)

\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{24}-\dfrac{1}{25}\)

\(=\dfrac{1}{5}-\dfrac{1}{25}\)

\(=\dfrac{4}{25}\)

b)

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.101}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}\)

\(=\dfrac{100}{101}\)

3 tháng 4 2018

a) \(\dfrac{1}{5.6}=\dfrac{1}{5}-\dfrac{1}{6}\)

\(\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{24.25}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{24}-\dfrac{1}{25}=\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{4}{25}\)b) \(\dfrac{2}{1.3}=1-\dfrac{1}{3}\)

tương tự

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)

21 tháng 4 2017

1. Ta có: \(\left|x\right|=7\Rightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\)

Vậy \(x\in\left\{\pm7\right\}\)

2. \(M=\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\right)\)

\(\Rightarrow M=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\right)\)

\(\Rightarrow M=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)

\(\Rightarrow M=\dfrac{1}{2}.\left(\dfrac{13}{39}-\dfrac{3}{39}\right)\)

\(\Rightarrow M=\dfrac{1}{2}.\dfrac{10}{39}=\dfrac{1.10}{2.39}=\dfrac{5}{39}\)

Tick mk vs! Thank nhiều!yeu

21 tháng 4 2017

1. Theo đb ta có: |x|=7
=> Có 2 TH:\(\left\{{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\) \(\in Z\)
Vậy x=7 \(\veebar\) x= -7 ( x\(\in\) Z) thì |x|=7
2. \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)
Đặt A= \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)
Ta thấy: \(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{3.5}\)
\(\dfrac{1}{5}-\dfrac{1}{7}=\dfrac{2}{5.7}\)
... \(\dfrac{1}{11}-\dfrac{1}{13}=\dfrac{2}{11.13}\)
=> 2D=2(\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\))
<=> 2D= \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\)
<=>2D=\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)
<=> 2D= \(\dfrac{1}{3}-\dfrac{1}{13}\)
<=>2D= \(\dfrac{13}{39}-\dfrac{3}{39}\)
<=>2D=\(\dfrac{10}{39}\)
=> D= \(\dfrac{10}{39}:2\)
<=> D= \(\dfrac{10}{39}.\dfrac{1}{2}\)
<=> D=\(\dfrac{5}{39}\)
Vậy D= \(\dfrac{5}{39}\)
_ Chc bn hk tốt_

16 tháng 5 2017

\(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)

\(M=2.(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99})\)

\(M=2.\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)

\(M=2.\dfrac{32}{99}\)

\(M=\dfrac{64}{99}\)

10 tháng 4 2018

http://vietjack.com/giai-sach-bai-tap-toan-6/bai-95-trang-28-sach-bai-tap-toan-6-tap-2.jsp

18 tháng 6 2018

Giải:

Biến đổi vế trái BĐT:

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

\(=\dfrac{1}{3}-\dfrac{1}{99}\)

\(=\dfrac{32}{99}\)

\(\dfrac{32}{99}>\dfrac{32}{100}\)

\(\Leftrightarrow\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}>\dfrac{32}{100}\)

\(\Leftrightarrow\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}>32\%\)

Vậy ...

18 tháng 6 2018

Thanks

11 tháng 4 2018

\(S=\dfrac{5-3}{5.3}+\dfrac{7-5}{7.5}....+\dfrac{25-23}{23.25}\)

\(S=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{23}-\dfrac{1}{25}\)

\(S=\dfrac{1}{3}-\dfrac{1}{25}=\dfrac{25-3}{3.25}=\dfrac{7}{25}\)

11 tháng 4 2018

sửa lại nha bạn

\(\dfrac{25-3}{25.3}=\dfrac{22}{75}\)

31 tháng 3 2017

Trả lời

a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...\dfrac{2}{99.101}\)

=\(2.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\right)\)

=\(2.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

= \(2.\left(\dfrac{1}{1}-\dfrac{1}{101}\right)\)

=\(2.\dfrac{100}{101}\)

=\(\dfrac{200}{101}\)

31 tháng 3 2017

Hình như phần b bạn chép đề sai hay sao đấy

20 tháng 4 2017

a, \(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{37.39}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{39}\)

\(=\dfrac{1}{3}-\dfrac{1}{39}\)

\(=\dfrac{12}{39}\)

Vậy \(A=\dfrac{12}{39}\)

b,\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{73.76}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{73}-\dfrac{1}{76}\)

\(=1-\dfrac{1}{76}\)

\(=\dfrac{75}{76}\)

Vậy \(B=\dfrac{75}{76}\)

20 tháng 4 2017

a) Ta có :

\(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+....................+\dfrac{2}{37.39}\)

\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...................+\dfrac{1}{37}-\dfrac{1}{39}\)

\(A=\dfrac{1}{3}-\dfrac{1}{39}=\dfrac{4}{13}\)

b) Ta có :

\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+..................+\dfrac{3}{73.76}\)

\(B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+..................+\dfrac{1}{73}-\dfrac{1}{76}\)

\(B=1-\dfrac{1}{76}=\dfrac{75}{76}\)

~ Học tốt ~