\(\dfrac{2}{2n-6}=\dfrac{3}{5x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2018

bạn có nhầm đề bài ko???????????????

bucminhbucminhbucminhbucminh

16 tháng 5 2018

ko

19 tháng 3 2017

a,Vế trái:

\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{2014}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1007}\right)\)

\(=\dfrac{1}{1008}+\dfrac{1}{2009}+...+\dfrac{1}{2014}\)

b,chưa có câu trả lời, sorry nhaleu

19 tháng 3 2017

Thanks.

18 tháng 9 2017

a/ Ta có :

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...........+\dfrac{1}{n^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

.......................

\(\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)

\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...........+\dfrac{1}{\left(n-1\right)n}\)

\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(\Leftrightarrow A< 1-\dfrac{1}{n}< 1\)

\(\Leftrightarrow A< 1\)

b/ Ta có :

\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+.................+\dfrac{1}{\left(2n\right)^2}\)

\(=\dfrac{1}{4}\left(1+\dfrac{1}{2^2}+\dfrac{1}{4^2}+..........+\dfrac{1}{n^2}\right)\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

..................

\(\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)

\(\Leftrightarrow B< \dfrac{1}{4}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.........+\dfrac{1}{\left(n-1\right)n}\right)\)

\(\Leftrightarrow B< \dfrac{1}{4}\left(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+......+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)

\(\Leftrightarrow B< \dfrac{1}{4}\left(1+1-\dfrac{1}{n}\right)\)

\(\Leftrightarrow B< \dfrac{1}{2}-\dfrac{1}{4n}< \dfrac{1}{2}\)

\(\Leftrightarrow B< \dfrac{1}{2}\)

19 tháng 9 2017

\(\)\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(A< 1-\dfrac{1}{n}< 1\)

\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2n^2}\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2n^2}\right)\)

\(B=\dfrac{1}{4}+\dfrac{1}{2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2n^2}\right)\)

\(B< \dfrac{1}{4}+\dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{\left(n-1\right)n}\right)\)

29 tháng 4 2017

BÀi 1

Để A \(\in\) Z

=>\(\left(n+2\right)⋮\left(n-5\right)\)

=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)

=>\(7⋮\left(n-5\right)\)

=>\(n-5\in\left\{1;7;-1;-7\right\}\)

=>\(n\in\left\{6;13;4;-2\right\}\)

Vậy \(n\in\left\{6;13;4;-2\right\}\)

29 tháng 4 2017

Giúp mk nha

Arigatou gozaimasu!

27 tháng 7 2017

a) \(\frac{3-2x}{5}=\frac{2}{7}\)

\(\Rightarrow7.\left(3-2x\right)=2.5\)

\(\Rightarrow21-14x=10\)

\(\Rightarrow14x=11\)

\(\Rightarrow x=\frac{11}{14}\)

27 tháng 7 2017

b) ( 5x - 6 ) : 7 = \(4\frac{1}{2}+0,25\%\)

( 5x - 6 ) : 7 = \(\frac{19}{4}\)

5x - 6 = \(\frac{19}{4}\). 7

5x - 6 = \(\frac{133}{4}\)

5x = \(\frac{133}{4}\)+ 6

5x = \(\frac{157}{4}\)

x = \(\frac{157}{4}\): 5

x = \(\frac{157}{20}\)

1 tháng 11 2017

đó giúp mk đi màkhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroi

à, mk quên chưa nói là ai giúp mk sẽ được luôn 2SP đóvuiok

giúp mk nhaok

cảm ơn nhiều!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

2 tháng 11 2017

những thánh giỏi toán ơi giúp mk được ko

mk năn nỉ đókhocroi

AH
Akai Haruma
Giáo viên
15 tháng 8 2018

Lời giải:

a) \((5x-1)^6=729=3^6=(-3)^6\)

\(\Rightarrow \left[\begin{matrix} 5x-1=3\\ 5x-1=-3\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{4}{5}\\ x=\frac{-2}{5}\end{matrix}\right.\)

b)

\(\frac{8}{25}=\frac{2^x}{5^{x-1}}=\frac{2^x}{5^x:5}=5.(\frac{2}{5})^x\)

\(\Rightarrow \frac{8}{125}=(\frac{2}{5})^x\)

\(\Rightarrow (\frac{2}{5})^3=(\frac{2}{5})^x\Rightarrow x=3\)

c)

\((\frac{1}{16})^x=(\frac{1}{2})^{10}\)

\(\Rightarrow (\frac{1}{2^4})^x=(\frac{1}{2})^{10}\)

\(\Rightarrow (\frac{1}{2})^{4x}=(\frac{1}{2})^{10}\Rightarrow 4x=10\Rightarrow x=\frac{5}{2}\)

d)

\(9^{x}:3^x=3\Rightarrow (\frac{9}{3})^x=3\)

\(\Rightarrow 3^x=3^1\Rightarrow x=1\)

a: \(\Leftrightarrow\dfrac{2}{3}x-\dfrac{5}{6}=\dfrac{-3}{2}x+\dfrac{3}{4}\)

=>13/6x=3/4+5/6

=>13/6x=9/12+10/12=19/12

hay x=19/26

b: \(\left(5x-3\right)\left(2x+5\right)=0\)

=>5x-3=0 hoặc 2x+5=0

=>x=3/5 hoặc x=-5/2

c: \(\left(\dfrac{5}{6}:x-\dfrac{5}{4}\right)^4=\dfrac{81}{16}\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{6}:x-\dfrac{5}{4}=\dfrac{3}{2}\\\dfrac{5}{6}:x-\dfrac{5}{4}=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{6}:x=\dfrac{11}{4}\\\dfrac{5}{6}:x=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10}{33}\\x=-\dfrac{10}{3}\end{matrix}\right.\)

d: \(\left|\dfrac{2}{5}x-\dfrac{1}{5}\right|\cdot\dfrac{5}{4}-2=\dfrac{3}{2}\)

\(\Leftrightarrow\left|\dfrac{2}{5}x-\dfrac{1}{5}\right|\cdot\dfrac{5}{4}=\dfrac{3}{2}+2=\dfrac{7}{2}\)

\(\Leftrightarrow\left|\dfrac{2}{5}x-\dfrac{1}{5}\right|=\dfrac{7}{2}:\dfrac{5}{4}=\dfrac{7}{2}\cdot\dfrac{4}{5}=\dfrac{28}{10}=\dfrac{14}{5}\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{5}x-\dfrac{1}{5}=\dfrac{14}{5}\\\dfrac{2}{5}x-\dfrac{1}{5}=-\dfrac{14}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3:\dfrac{2}{5}=\dfrac{15}{2}\\x=-\dfrac{13}{5}:\dfrac{2}{5}=\dfrac{-13}{2}\end{matrix}\right.\)

30 tháng 3 2018

các bạn ơi giúp mìh với mìh đag cần gấp ai nhanh và đúng thì mih tick cho

a: \(=\dfrac{32}{9}+\dfrac{13}{6}=\dfrac{32\cdot2+13\cdot3}{18}=\dfrac{64+39}{18}=\dfrac{103}{18}\)

b: \(=\dfrac{43}{8}-\dfrac{43}{6}=\dfrac{-43}{24}\)

c:\(=4-2-\dfrac{1}{6}=2-\dfrac{1}{6}=\dfrac{11}{6}\)

d: \(=5+\dfrac{2}{3}+7+\dfrac{1}{2}-3-\dfrac{1}{2}+1+\dfrac{2}{3}\)

\(=10+\dfrac{4}{3}=\dfrac{34}{3}\)