Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\)
\(=2\times\left(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}+\dfrac{1}{9\times11}\right)\)
\(=2\times\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)\)
\(=1-\dfrac{1}{11}\)
\(=\dfrac{11}{11}-\dfrac{1}{11}\)
\(=\dfrac{10}{11}\)
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\\ =1-\dfrac{1}{11}\\ =\dfrac{10}{11}\)
a) \(\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{2}{5}\right)\times\left(1-\dfrac{2}{7}\right)\times\left(1-\dfrac{2}{9}\right)\)
\(=\left(\dfrac{3}{3}-\dfrac{1}{3}\right)\times\left(\dfrac{5}{5}-\dfrac{2}{5}\right)\times\left(\dfrac{7}{7}-\dfrac{2}{7}\right)\times\left(\dfrac{9}{9}-\dfrac{2}{9}\right)\)
\(=\dfrac{2}{3}\times\dfrac{3}{5}\times\dfrac{5}{7}\times\dfrac{7}{9}\)
\(=\dfrac{2\times3\times5\times7}{3\times5\times7\times9}\)
\(=\dfrac{2}{9}\)
b) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}\)
\(=1-\dfrac{1}{9}\)
\(=\dfrac{9}{9}-\dfrac{1}{9}\)
\(=\dfrac{8}{9}\)
Sửa câu b)
b) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}\)
Đặt \(A=\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}\)
\(2A=\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}\)
\(2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}\)
\(2A=1-\dfrac{1}{9}\)
\(2A=\dfrac{9}{9}-\dfrac{1}{9}\)
\(2A=\dfrac{8}{9}\)
\(A=\dfrac{8}{9}:2\)
\(A=\dfrac{8}{18}\)
\(A=\dfrac{4}{9}\)
Vậy : \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}=\dfrac{4}{9}\)
Ta có:
A = \(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+\frac{2}{9x11}\)
= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
= \(\frac{1}{1}-\frac{1}{11}\)
=\(\frac{10}{11}\)
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\)
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\)
\(=1+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\)
~ Hok tốt ~
\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(\Rightarrow B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow B=1-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
_Học tốt_
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{11}\right)=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)
\(1-\left(\frac{12}{5}+y=\frac{8}{9}\right):\frac{16}{9}=0\)
\(1-\left(\frac{12}{5}+y-\frac{8}{9}\right)=0\times\frac{16}{9}\)
\(1-\left(\frac{12}{5}+y-\frac{8}{9}\right)=0\)
\(\frac{12}{5}+y-\frac{8}{9}=1-0\)
\(\frac{12}{5}-y+\frac{8}{9}=1\)
\(\frac{12}{5}-y=1-\frac{8}{9}\)
\(\frac{12}{5}-y=\frac{1}{9}\)
\(y=\frac{12}{5}-\frac{1}{9}\)
\(y=\frac{108}{45}-\frac{5}{45}\)
\(y=\frac{103}{45}\)
SOS
hép☹