Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐặtA=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)\)
\(A=1-\frac{1}{64}=\frac{63}{64}\)
\(=\left(\frac{3}{5}+\frac{2}{5}\right)+\left(\frac{6}{11}+\frac{16}{11}\right)+\left(\frac{7}{13}+\frac{19}{13}\right)\)
\(=1+2+2\)
\(=5\)
72/99 - 28/99 - 14/99 = 72/99 - ( 28/99+14/99 ) = 72/99 - 42/99 = 30/99 = 10/33.
83,45 - 30,98 - 42,47 = 83,45 - ( 30 , 98 + 42 , 47 ) = 83,45 - 73,45 = 10,45.
Nhớ k mình nha
a) 2/9 +1/5 +7/9+4/5
=( 2/9+7/9)+(1/5+4/5)
=1+1=2
b) 1/12+3/16+5/12+5/16
=(1/12 +5/12)+(3/16+5/16)
=1/2 +1/2=1
a) \(\frac{3}{5}\times\frac{8}{27}\times\frac{5}{3}\)
\(=\left(\frac{3}{5}\times\frac{5}{3}\right)\times\frac{8}{27}\)
\(=1\times\frac{8}{27}\)
\(=\frac{8}{27}\)
b) \(\frac{7}{19}\times\frac{1}{3}+\frac{7}{19}\times\frac{2}{3}\)
\(=\frac{7}{19}\times\left(\frac{1}{3}+\frac{2}{3}\right)\)
\(=\frac{7}{19}\times1\)
\(=\frac{7}{19}\)
\(1\frac{1}{2}x1\frac{1}{3}:1\frac{1}{4}:1\frac{1}{5}\)
\(=\frac{3}{2}x\frac{4}{3}:\frac{5}{4}:\frac{6}{5}\)
\(=\frac{3}{2}x\frac{4}{3}x\frac{4}{5}x\frac{5}{6}\)
\(=\frac{4x4}{2x6}=\frac{2x2x4}{2x2x3}=\frac{4}{3}\)
\(1\frac{1}{2}\times1\frac{1}{3}\div1\frac{1}{4}\div1\frac{1}{5}=\frac{3}{2}\times\frac{4}{3}\div\frac{5}{4}\div\frac{6}{5}=\frac{3}{2}\times\frac{4}{3}\times\frac{4}{5}\times\frac{5}{6}\)
\(=\frac{3\times4\times4\times5}{2\times3\times5\times6}=\frac{4}{3}\)
Đặt :
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(\Leftrightarrow\)\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\)
\(\Leftrightarrow\)\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\)
\(\Leftrightarrow\)\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)
\(\Leftrightarrow\)\(A=1-\frac{1}{2^7}\)
Vậy \(A=1-\frac{1}{2^7}\)
\(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x\left(1-\frac{1}{5}\right)x\left(1-\frac{1}{6}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}\)
\(=\frac{1.2.3.4.5}{2.3.4.5.6}=\frac{1}{6}\)
Lời giải:
$=\frac{21\times 2\times 12-42\times 12}{15+38:19}+16:4+16$
$=\frac{42\times 12-42\times 12}{15+38:19}+4+16$
$=\frac{0}{15+38:9}+4+16=0+4+16=20$
Cô ơi cái này là 21 x 24 chứ ko phải 21 x 2 x 12 đâu ạ