Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
H=\(\frac{1\cdot2\cdot3+2\cdot4\cdot6+3\cdot6\cdot9+5\cdot10\cdot15}{1\cdot3\cdot6+2\cdot6\cdot12+3\cdot9\cdot18+5\cdot15\cdot30}=\frac{1.2.3+2^3.\left(1.2.3\right)+3^3.\left(1.2.3\right)+5^3.\left(1.2.3\right)}{1.3.6+2^3.\left(1.3.6\right)+3^3.\left(1.3.6\right)+5^3.\left(1.3.6\right)}=\frac{1.2.3.\left(1+2^3+3^3+5^3\right)}{1.3.6.\left(1+2^3+3^3+5^3\right)}=\frac{2}{6}=\frac{1}{3}\)
\(A=\frac{3^7\cdot17-3^9}{2^3\cdot3^5}=\frac{3^7\left(17-3^2\right)}{2^3\cdot3^5}=\frac{3^7\cdot2^3}{2^3\cdot3^5}=9\)
\(B=\frac{3^2\cdot4^2\cdot2^{32}}{11\cdot2^{13}\cdot4^{11}-16^9}=\frac{3^2\cdot2^{36}}{2^{35}\cdot11-2^{36}}=\frac{3^2\cdot2^{36}}{2^{35}\left(11-2\right)}=\frac{3^2\cdot2^{36}}{2^{35}\cdot3^2}=2\)
\(\frac{11\cdot3^{29}-3^{30}}{2^2\cdot3^{28}}=\frac{3^{29}\left(11-3\right)}{2^2\cdot3^{28}}=\frac{3^{29}\cdot8}{2^2\cdot3^{28}}=6\)
\(I=\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}=\frac{5.2^{30}.3^{27}-2^2.3^{20}.2^{27}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{5.2^{30}.3^{27}-3^{30}.2^{29}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{2^{29}.3^{27}.\left(5.2-3^3\right)}{2^{28}.3^{18}.\left(5.3-2.7\right)}\)
\(=\frac{2^{29}.3^{27}.-17}{2^{18}.3^{18}}\)
\(=\frac{2^9.3^9.-17}{1}\)
Ta có \(H=\frac{\left(3.4.2^{16}\right)}{11.2^{13}.4^{11}-16^9}\)
\(=\frac{3.4.2^{16}}{11.2^{13}.2^{22}-2^{36}}\)
\(=\frac{3.2^{18}}{11.2^{35}-2^{36}}\)
\(=\frac{3.2^{18}}{2^{35}.\left(11-2\right)}\)
\(=\frac{3.2^{18}}{2^{35}.3^2}\)
\(=\frac{1}{2^{17}.3}\)
a, A= \(5\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)
\(A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=5\left(1-\dfrac{1}{100}\right)\)
\(A=5.\dfrac{99}{100}=\dfrac{99}{20}.\)
b, \(C=1.2.3+2.3.4+...+8.9.10\)
\(4C=1.2.3.4+2.3.4.\left(5-1\right)+...+8.9.10.\left(11-7\right)\)\(4C=1.2.3.4+2.3.4.5-1.2.3.4+...+8.9.10.11-7.8.9.10\)\(4C=8.9.10.11\)
\(C=\dfrac{8.9.10.11}{4}=1980.\)
c, https://hoc24.vn/hoi-dap/question/384591.html
Câu này bạn vào đây mình đã giải câu tương tự nhé.
\(1)A=\dfrac{5}{1.2}+\dfrac{5}{2.3}+...+\dfrac{5}{99.100}\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=5\cdot\dfrac{99}{100}\)
\(\Leftrightarrow A=\dfrac{99}{20}\)
3/ \(2\left(x-3\right)-3\left(1-2x\right)=4+4\left(1-x\right)\)
\(\Leftrightarrow2x-6-3+6x=4+4-4x\)
\(\Leftrightarrow8x-9=8-4x\)
\(\Leftrightarrow8x+4x=8+9\)
\(\Leftrightarrow12x=17\)
\(\Leftrightarrow x=\dfrac{17}{12}\)
Vậy \(x=\dfrac{17}{12}\)
4/ \(\dfrac{x-2}{2}-\dfrac{1+x}{3}=\dfrac{4-3x}{4}-1\)
\(\Leftrightarrow6\left(x-2\right)-4\left(1+x\right)=3\left(4-3x\right)-12\)
\(\Leftrightarrow6x-12-4-4x=12-9x-12\)
\(\Leftrightarrow6x-4-4x=12-9x\)
\(\Leftrightarrow2x-4=12-9x\)
\(\Leftrightarrow2x+9x=12+4\)
\(\Leftrightarrow11x=16\)
\(\Leftrightarrow x=\dfrac{16}{11}\)
Vậy \(x=\dfrac{16}{11}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{14.15.16}\)
\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{14.15.16}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{14.15}-\frac{1}{15.16}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{15.16}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{240}\right)\)
\(=\frac{1}{2}.\frac{119}{240}\)
\(=\frac{119}{480}\)
Bài làm:
Ta có:\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{14.15.16}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{14.15.16}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{14.15}-\frac{1}{15.16}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{15.16}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{240}\right)\)
\(=\frac{1}{2}.\frac{119}{240}=\frac{119}{480}\)
\(A=\frac{15.3^{11}+4.27^1}{9^7}\)
\(\Rightarrow A=\frac{3.5.3^{11}+4.3^{3^1}}{\left(3^2\right)^7}\)
\(\Rightarrow A=\frac{3^{12}.5+4.3^3}{3^{14}}\)
\(\Rightarrow A=\frac{3^3.\left(5.3^8+4.3^3\right)}{3^{14}}\)
\(\Rightarrow A=\frac{32805+4}{177147}\)
\(\Rightarrow A=\frac{32809}{177147}\)
\(=\dfrac{2^{18}.18^7.3^3+3^{15}.2^{15}}{2^{10}.6^{15}+3^{14}.15.4^{13}}\)
\(=\dfrac{2^{18}.2^7.9^7.3^5+6^{15}}{2^{10}.6^{15}+3^{14}.3.5.2^{26}}\)
\(=\dfrac{2^{25}.3^{17}+6^{15}}{2^{10}.6^{15}+5.3^{15}.2^{26}}\)
\(=\dfrac{6^{15}.\left(2^{10}.3^2+1\right)}{6^{15}.\left(2^{10}+5.2^{11}\right)}\)
\(=\dfrac{2^{10}.3^2+1}{2^{10}+5.2^{11}}\)
\(=\dfrac{9}{11}+\dfrac{1}{2^{10}.11}\)