\(\dfrac{2008.2010+477}{2009.2009+476}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

bạn ghi rõ đề chứ mik chả bt làm gì lun .

nhưng nếu tính thế thì =1 cách làm dệ lắm

29 tháng 3 2018

Ôn tập chương III

3 tháng 5 2018

Ãn tập chÆ°Æ¡ng III

17 tháng 6 2017

Ta có :

\(F=\dfrac{4}{2.4}+\dfrac{4}{4.6}+..................+\dfrac{4}{2008.2010}\)

\(\Rightarrow F=2\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+.............+\dfrac{2}{2008.2010}\right)\)

\(\Rightarrow F=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+..............+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)

\(\Rightarrow F=2\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)\)

\(\Rightarrow F=2.\dfrac{502}{1005}=\dfrac{1004}{1005}\)

17 tháng 6 2017

\(F=\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+......+\dfrac{4}{2008.2010}\)

\(F=\dfrac{4}{2}\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+.....+\dfrac{1}{2008.2010}\right)\)

\(F=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+.....+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)\(F=2\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)\)\(F=2.\dfrac{502}{1005}\)

\(F=\dfrac{1004}{1005}\)

25 tháng 4 2017

a)\(\dfrac{4}{2\cdot4}+\dfrac{4}{4\cdot6}+\dfrac{4}{6\cdot8}+...+\dfrac{4}{2008\cdot2010}\)

\(=2\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2008\cdot2010}\right)\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)=2\cdot\dfrac{502}{1005}=\dfrac{1004}{1005}\)

b)\(\dfrac{\dfrac{3}{41}-\dfrac{12}{47}+\dfrac{27}{53}}{\dfrac{4}{41}-\dfrac{16}{47}+\dfrac{36}{53}}=\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}=\dfrac{3}{4}\)

25 tháng 4 2017

a) gọi biểu thức đó là A

Ta có công thức \(\dfrac{a}{b.c}=\dfrac{a}{c-b}.\left(\dfrac{1}{b}-\dfrac{1}{c}\right)\)

Dựa vào công thức trên, ta có

\(A=\dfrac{4}{2}.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+....+\dfrac{1}{2008}-\dfrac{1}{2009}\right)\)

\(A=\dfrac{4}{2}.\left(\dfrac{1}{2}-\dfrac{1}{2009}\right)\)

\(A=2.\left(\dfrac{2007}{4018}\right)=\dfrac{2007}{2009}\)

b) dễ quá bạn tự làm. (không phải mink không biết làm đâu nha)

29 tháng 4 2018

-313/477<-299/447

29 tháng 4 2018

bạn phải giải ra chớ hum

13 tháng 10 2016

2009.2009=2009(2008+1)=2009.2008+2009

2008+2010=2008(2009+1)=2008.2009+2008

=> 2009.2009>2008.2010

k hộ mình cái

13 tháng 10 2016

B = 2008.2010 = (2009 - 1).(2009 + 1) = 2009.(2009 + 1) - 1.(2009 + 1) = 2009.2009 + 2009 - 2009 - 1 = 2009.2009 - 1 < A

Vậy A > B

27 tháng 4 2017

\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)

=2.\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\)

=2.(\(\frac{1}{2}-\frac{1}{2010}\))  =  2.(\(\frac{1005}{2010}-\frac{1}{2010}\))

=2.\(\frac{502}{1005}\)

=\(\frac{1004}{1005}\)

27 tháng 4 2017

\(=2\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{2008\cdot2010}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{2008}-\frac{1}{2010}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)

\(=2\left(\frac{1005}{2010}-\frac{1}{2010}\right)\)

\(=2\cdot\frac{1004}{2010}\)

\(=\frac{1004}{1005}\)

\(k\)\(mk\)\(nha\)\(bn\)

= 1/2 . 2 . ( 2/4.6 - 2/6.8 + .......+ 2/2008.2010)
= 1 . (1/4 - 1/6 + 1/6 - 1/8 +.....+ 1/2010 )
= 1 . ( 1/4 - 1/2010)
= 1 . 1003/4020 = 1003/4020

2 tháng 4 2017

mik nghĩ bạn viết sai đề phải là 4/2*4 chứ không phải là 4*4/2 nều mà bạn sai đề thì phải giải như sau:

ta có A=2*(2/2*4+2/4*6+2/6*8+....2/2008*2010)

A=2*(1/2-1/4+1/4-1/6+1/6-1/8+.....+1/2008-1/2010)

A=2*(1/2-1/2010)

A=2*502/1005

A=1004/1005

5 tháng 6 2017

Ta có : \(A=\frac{2009.2010-2}{2008+2008.2010}>0\)

           \(B=\frac{-2009.20102010}{20092009.2010}< 0\)

Nên A > B 

5 tháng 6 2017

Ta có :

\(A=\frac{2009.2010-2}{2008+2008.2010}\)

\(A=\frac{\left(2008+1\right).2010-2}{2008.\left(1+2010\right)}=\frac{2008.2010+2008}{2008.2011}\)

\(A=\frac{2008.\left(1+2010\right)}{2008.2011}=\frac{2008.2011}{2008.2011}=1\)

\(B=\frac{-2009.20102010}{20092009.2010}=\frac{\left(-2009\right).2010.10001}{2009.10001.2010}=\frac{-2009}{2009}=-1\)

Vậy \(A+B=1+\left(-1\right)=0\)

27 tháng 6 2020

A = \(\frac{2009.2010-2}{2008+2008.2010}=\frac{2009.2010-2}{2008.\left(2010+1\right)}=\frac{2009.2010-2}{2008.2011}=\frac{2008.2010+2010-2}{2008.2011}=\frac{2008.2011}{2008.2011}=1\)

B = \(\frac{-2009.20102010}{20092009.2010}=\frac{-2009.10001.2010}{2009.10001.2010}=-1\)

1 > -1 => A > B

27 tháng 6 2020

Ta có:

\(A=\frac{2009.2010-2}{2008+2008.2010}\)

\(A=\frac{\left(2008+1\right).2010-2}{2008+2008.2010}\)

\(A=\frac{2008.2010+2010-2}{2008+2008.2010}\)

\(A=\frac{2008.2010+2008}{2008+2008.2010}\)

\(A=1\)

     \(B=\frac{-2009.20102010}{20092009.2010}\)

\(B=\frac{-2009.2010.10001}{2009.10001.2010}\)

\(B=-1\)

Vì \(1>-1\Rightarrow A>B\)

Vậy \(A>B\)