\(\dfrac{2}{-x^2+6x-8}-\dfrac{x-1}{x-2}=\dfrac{x+3}{x-4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2021

ĐK: ` x\ne 2; x \ne 4`.

`2/(-x^2+6x-8)-(x-1)/(x-2)=(x+3)/(x-4)`

`<=> -2-(x-1)(x-4)=(x+3)(x-2)`

`<=> −x^2+5x−6=x^2+x−6`

`<=> 2x^2-4x=0`

`<=> 2x(x-2)=0`

`<=>` \(\left[{}\begin{matrix}x=0\\x=2\left(L\right)\end{matrix}\right.\)

Vậy `S={0}`.

26 tháng 5 2021

ĐKXĐ: \(x\neq 2;x\neq 4\)

\(PT\Leftrightarrow\dfrac{-2}{\left(x-2\right)\left(x-4\right)}-\dfrac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}=\dfrac{\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}\)

\(\Rightarrow-2-\left(x-1\right)\left(x-4\right)=\left(x+3\right)\left(x-2\right)\)

\(\Leftrightarrow-2-\left(x^2-5x+4\right)=x^2+x-6\Leftrightarrow2x^2-4x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=2\left(l\right)\end{matrix}\right.\)

Vậy x = 0

6 tháng 2 2018

1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\)

ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định )

\(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\)

vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn

19 tháng 1 2018

a/\(\dfrac{8}{x-8}+1+\dfrac{11}{x-11}+1=\dfrac{9}{x-9}+1+\dfrac{10}{x-10}+1\)

=>\(\dfrac{8+x-8}{x-8}+\dfrac{11+x-11}{x-11}=\dfrac{9+x-9}{x-9}+\dfrac{10+x-10}{x-10}\)

=>\(\dfrac{x}{x-8}+\dfrac{x}{x-11}-\dfrac{x}{x-9}-\dfrac{x}{x-10}=0\)

=>x.\(\left(\dfrac{1}{x-8}+\dfrac{1}{x-11}+\dfrac{1}{x-9}+\dfrac{1}{x-10}\right)=0\)

=>x=0

b/\(\dfrac{x}{x-3}-1+\dfrac{x}{x-5}-1=\dfrac{x}{x-4}-1+\dfrac{x}{x-6}-1\)

=>\(\dfrac{x-x+3}{x-3}+\dfrac{x-x+5}{x-5}-\dfrac{x-x+4}{x-4}-\dfrac{x-6+6}{x-6}=0\)

=>\(\dfrac{3}{x-3}+\dfrac{5}{x-5}-\dfrac{4}{x-4}-\dfrac{6}{x-6}=0\)

Đến đây thì bạn giải giống câu a

giải cho mk 2 câu cuối đi

28 tháng 6 2017

Quy đồng mẫu thức nhiều phân thức

Quy đồng mẫu thức nhiều phân thức

17 tháng 11 2017

Bạn siêng thật !!!

a: \(=\dfrac{4x^3+8x^2-11x+3-\left(x^2-5\right)\left(2x-1\right)-2x^3-5x^2+x+1}{\left(2x-1\right)^3}\)

\(=\dfrac{2x^3+3x^2-10x+4-2x^3+x^2+10x-5}{\left(2x-1\right)^3}\)

\(=\dfrac{4x^2-1}{\left(2x-1\right)^3}=\dfrac{2x+1}{\left(2x-1\right)^2}\)

b: \(=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{8+8x^8+8-8x^8}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{32}{1+x^{32}}\)

12 tháng 2 2018

giải hết đống này chắc @@ quá,để tối đi,giờ t đi làm mấy bài ngắn ngắn

12 tháng 2 2018

tuỳ bạn, qua Tết mik đăng lại

18 tháng 4 2017

1.

\(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\left(ĐKXĐ:x\ne1\right)\\ \Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\\ \Leftrightarrow21x-9=2x-2\\ \Leftrightarrow19x=7\\ \Leftrightarrow x=\dfrac{7}{19}\left(TMĐK\right)\)

2.

\(\dfrac{5x-1}{3x+2}=\dfrac{5x-7}{3x-1}\left(ĐKXĐ:x\ne-\dfrac{2}{3};x\ne\dfrac{1}{3}\right)\\ \Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\\ \Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\\ \Leftrightarrow-8x+1=-11x-14\\ \Leftrightarrow3x=-15\\ \Leftrightarrow x=-5\left(TMĐK\right)\)

3.

\(\dfrac{1-x}{x+1}+3=\dfrac{2x+3}{x+1}\left(ĐKXĐ:x\ne-1\right)\\ \Leftrightarrow\left(\dfrac{1-x}{x+1}+3\right)\left(x+1\right)=2x+3\\ \Leftrightarrow\dfrac{1-x+3\left(x+1\right)}{x+1}.\left(x+1\right)=2x+3\\ \Leftrightarrow\dfrac{4+2x}{x+1}\left(x+1\right)=2x+3\\ \Leftrightarrow4+2x=2x+3\\ \Leftrightarrow4=3\)

Vô nghiệm.

14 tháng 12 2018

a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)

14 tháng 12 2018

thanks

13 tháng 11 2018

a) \(x-1-\dfrac{x^2-4}{x+1}=\dfrac{\left(x-1\right)\left(x+1\right)-\left(x^2-4\right)}{x+1}=\dfrac{x^2-1-x^2+4}{x+1}=\dfrac{3}{x+1}\)

b) \(\dfrac{3x-1}{2\left(3x+1\right)}+\dfrac{3x+1}{2\left(3x-1\right)}-\dfrac{6x}{\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{\left(3x-1\right)^2+\left(3x+1\right)^2-12x}{2\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{18x^2-12x+2}{2\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{9x^2-6x+1}{\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{\left(3x-1\right)^2}{\left(3x-1\right)\left(3x+1\right)}=\dfrac{3x-1}{3x+1}\)

20 tháng 11 2022

c: \(=\dfrac{1}{x-2}-\dfrac{x+4}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x\left(x+2\right)}\)

\(=\dfrac{x\left(x+2\right)-x^2-4x-2x+4}{x\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2+2x-x^2-6x+4}{x\left(x-2\right)\left(x+2\right)}=\dfrac{-4x+4}{x\left(x-2\right)\left(x+2\right)}\)

d: Sửa đề: \(\dfrac{2x^2+1}{x^3+1}-\dfrac{x-1}{x^2-x+1}-\dfrac{1}{x+1}\)

\(=\dfrac{2x^2+1-x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\)