\(D=\frac{1}{Ix-2I+3}\) Tìm GTLN

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2017

Vì / x-2 / luôn lớn hơn hoặc bằng 0, suy ra: / x-2 / + 3 luôn lớn hơn hoặc bằng 3

Để D có giá trị lớn nhất thì / x-2 / +3=3

Vậy giá trị lớn nhất của biểu thức trên là : 1/3

9 tháng 1 2017

Cái kia là GTTĐ của x -2 à

18 tháng 9 2017

dell biết\

2 tháng 11 2015

biểu thức B lớn nhất khi 6|x+2|+8 nhỏ nhất

Mà 6.|x+2|+8 > 8

=> GTNN của 6.|x+2|+8 là 8 khi và chỉ khi:

x+2=0

=> x=-2

Vậy x=-2 thì B lớn nhất.

28 tháng 9 2020

a) Ta có \(\left|x-4\right|\ge0\forall x\Rightarrow A=7+\left|x-4\right|\ge7\forall x\)

Dấu "=" xảy ra <=> x - 4 = 0

=> x = 4

Vậy Min A = 7 <=> x = 4

b) Ta có : \(\left|2-3x\right|\ge0\forall x\Rightarrow B=\left|2-3x\right|-\frac{1}{5}\ge-\frac{1}{5}\forall x\)

Dấu "=" xảy ra <=> 2 - 3x = 0

=> 3x = 2

=> x = 2/3

Vậy Min B = -1/5 <=> x = 2/3

c) Ta có \(\left|\frac{1}{2}-5x\right|\ge0\forall x\Rightarrow C=7-\left|\frac{1}{2}-5x\right|\le7\forall x\)

Dấu "=" xảy ra <=> 1/2 - 5x = 0

=> x = 1/10 

Vậy Max C = 7 <=> x = 1/10

2 tháng 8 2018

a) Vì : \(\left(x+1\right)^2\ge0\forall x\)

             \(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)

Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)

Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)

Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)

29 tháng 1 2019

b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Vậy....

20 tháng 9 2015

\(\left|x-y\right|+\left|y+\frac{5}{17}\right|=0\)

\(\Leftrightarrow\left|x-y\right|=\left|y+\frac{5}{17}\right|=0\)

\(\Leftrightarrow x=y=-\frac{5}{17}\)