\(\dfrac{1}{cosx\left(sinx-cosx\right)}=2\sqrt{2}sinx+\dfrac{2cosx}{sinx-cosx}\)

Bà...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2021

Đk: \(\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+m2\pi\\x\ne\dfrac{\pi}{4}+n\pi\end{matrix}\right.\left(m,n\in Z\right)\)

PT \(\Leftrightarrow1=2\sqrt{2}sinx.cosx\left(sinx-cosx\right)+2cos^2x\)

\(\Leftrightarrow\sqrt{2}.2sinx.cosx\left(sinx-cosx\right)+\left(2cos^2x-1\right)=0\)

\(\Leftrightarrow\sqrt{2}sin2x\left(sinx-cosx\right)+\left(cosx-sinx\right)\left(cosx+sinx\right)=0\)

\(\Leftrightarrow\sqrt{2}sin2x=sinx+cosx\)

\(\Leftrightarrow\sqrt{2}sin2x=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=x+\dfrac{\pi}{4}+k2\pi\\2x=\pi-x-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k2\pi\\x=\dfrac{\pi}{4}+k\dfrac{2\pi}{3}\end{matrix}\right.\left(k\in Z\right)\)

30 tháng 9 2021

Cảm mơn nhiều nha :3

20 tháng 8 2018

a.\(\dfrac{sin2x+cosx-\sqrt{3}\left(cos2x+sinx\right)}{2sin2x-\sqrt{3}}=1\left(1\right)\)

ĐKXĐ: sin2x≠\(\dfrac{\sqrt{3}}{2}\)

(1) ⇔ sin2x + cosx - \(\sqrt{3}\) ( cos2x + sinx) = 2sin2x - \(\sqrt{3}\)

⇔cosx - \(\sqrt{3}\) sinx = \(\sqrt{3}\) cos2x + sin2x +\(\sqrt{3}\)

\(\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}\)

\(sin\left(\dfrac{\Pi}{6}-x\right)=sin\left(2x+\dfrac{\Pi}{3}\right)-sin\dfrac{\Pi}{3}\)

\(sin\left(\dfrac{\Pi}{6}-x\right)=2cos\left(x+\dfrac{\Pi}{3}\right)sinx\)

\(sin\left(\dfrac{\Pi}{6}-x\right)=2sin\left(\dfrac{\Pi}{6}-x\right)sinx\)

\(sin\left(\dfrac{\Pi}{6}-x\right)\left(2sinx-1\right)=0\)

Đến đây tự giải tiếp nha nhớ đối chiếu đk.

20 tháng 8 2018

b.\(\left(2cosx-1\right)cotx=\dfrac{3}{sinx}+\dfrac{2sinx}{cosx-1}\left(1\right)\)

ĐKXĐ: sinx≠0 và cosx≠1

(1)⇔\(\left(2cosx-1\right)\dfrac{cosx}{sinx}=\dfrac{3}{sinx}+\dfrac{2sinx}{cosx-1}\)

⇔cosx(2cosx-1)(cosx-1) = 3(cosx-1) + 2sin2x

⇔2cos3x - cos2x - 2cosx +1 = 0

⇔ (cosx-1)(cosx+1)(2cosx-1)=0

10 tháng 1 2018

mọi người giúp với ạ... :)

19 tháng 9 2017

hộ vs ae ơi

NV
31 tháng 7 2020

d/

\(\Leftrightarrow2\left(sinx-cosx\right)\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(sinx-cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\2\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow x-\frac{\pi}{4}=k\pi\Rightarrow x=\frac{\pi}{4}+k\pi\)

\(\left(2\right)\Leftrightarrow2+2sinx.cosx=\sqrt{3}cos2x\)

\(\Leftrightarrow2+sin2x=\sqrt{3}cos2x\)

\(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x=-1\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=-1\)

\(\Leftrightarrow2x-\frac{\pi}{3}=-\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\frac{\pi}{12}+k\pi\)

NV
31 tháng 7 2020

c/

\(\Leftrightarrow sinx-sin^2x=cosx-cos^2x\)

\(\Leftrightarrow sinx-cosx-\left(sin^2x-cos^2x\right)=0\)

\(\Leftrightarrow sinx-cosx-\left(sinx-cosx\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(1-sinx-cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\1-sinx-cosx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\\1-\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

3 tháng 9 2018

\(\left(sin\dfrac{x}{2}-cox\dfrac{x}{2}\right)^2+\sqrt{3}cosx=2sin5x+1\)

\(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}-2sin\dfrac{x}{2}cos\dfrac{x}{2}+\sqrt{3}cosx=2sin5x+1\)

\(1-sinx+\sqrt{3}cosx=2sin5x+1\)

\(sin\left(\dfrac{\Pi}{3}-x\right)=sin5x\)

3 tháng 9 2018

\(2sinx\left(\sqrt{3}cosx+sinx+2sin3x\right)=1\)

\(2\sqrt{3}sinxcosx+2sin^2x+4sinxsin3x=1\)

\(\sqrt{3}sin2x+1-cos2x+cos2x-2cos4x=1\)

\(\sqrt{3}sin2x+cos2x=2cos4x\)

\(cos\left(2x-\dfrac{\Pi}{3}\right)=cos4x\)