Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ : 9x2 - 16 # 0
=> ( 3x - 4)( 3x + 4) # 0
=> x # \(\dfrac{4}{3}\); x # \(-\dfrac{4}{3}\)
Vậy,...
b) ĐKXĐ : x2 - 4x + 4 # 0
=> ( x - 2)2 # 0
=> x # 2
Vậy,...
c) ĐKXĐ : x2 - 1# 0
=> x # 1 ; x # -1
vậy,..
d) ĐKXĐ : 2x2 - x # 0
=> x( 2x - 1) # 0
=> x # 0 ; x # \(\dfrac{1}{2}\)
Vậy,...
a,\(\dfrac{x^2-4}{9x^2-16}\)
Phân thức trên được xác định \(\Leftrightarrow9x^2-16\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-4\ne0\\3x+4\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{4}{3}\\x\ne-\dfrac{4}{3}\end{matrix}\right.\)
Vậy...
b,\(\dfrac{2x-1}{x^2-4x+4}\)
Phân thức trên được xác định \(\Leftrightarrow x^2-4x+4\ne0\)
\(\Leftrightarrow\left(x-2\right)^2\ne0\)
\(\Leftrightarrow x-2\ne0\)
\(\Leftrightarrow x\ne2\)
c,\(\dfrac{x^2-4}{x^2-1}\)
Phân thức trên được xác định \(\Leftrightarrow x^2-1\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
Vậy...
d,\(\dfrac{5x-3}{2x^2-x}\)
Phân thức trên được xác định \(\Leftrightarrow2x^2-x\ne0\)
\(\Leftrightarrow x\left(2x-1\right)\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne0\\2x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne0\\x\ne\dfrac{1}{2}\end{matrix}\right.\)
Vậy...
bài 1:
\(\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}\)
<=>\(\left(\dfrac{x-10}{1994}-1\right)+\left(\dfrac{x-8}{1996}+-1\right)+\left(\dfrac{x-6}{1998}-1\right)=\left(\dfrac{x-2002}{2}-1\right)+\left(\dfrac{x-2000}{4}-1\right)+\left(\dfrac{x-1998}{6}-1\right)\)
<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}\)
<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}=0\)
<=>(x-2004)\(\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}\right)\)
vì 1/1994+1/1996+1/1998-1/2-1/4-1/6 khác 0
nên x-2004=0=>x=2004
vyaj.......
bài 2:
\(\dfrac{x-85}{15}+\dfrac{x-74}{13}+\dfrac{x-67}{11}+\dfrac{x-64}{9}=10\)
<=>\(\left(\dfrac{x-85}{15}-1\right)+\left(\dfrac{x-74}{13}-2\right)+\left(\dfrac{x-67}{11}-3\right)+\left(\dfrac{x-64}{9}-4\right)=0\)
<=>\(\dfrac{x-100}{15}+\dfrac{x-100}{13}+\dfrac{x-100}{11}+\dfrac{x-100}{9}=0\)
<=>\(\left(x-100\right)\left(\dfrac{1}{15}+\dfrac{1}{13}+\dfrac{1}{11}+\dfrac{1}{9}\right)=0\)
vì 1/15+1/13+1/11+1/9 khác 0
=>x-100=0<=>x=100
a)\(\frac{3+2x}{2+x}-1=\frac{2-x}{2+x}\) (x khác -2)
\(\Leftrightarrow\frac{3+2x}{2+x}-\frac{2-x}{2+x}=1\)
\(\Leftrightarrow\frac{1+3x}{2+x}=1\)
\(\Leftrightarrow1+3x=2+x\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
b) \(\frac{5-2x}{3}+\frac{x^2-1}{3}x-1=\frac{\left(x-2\right)\left(1-3x\right)}{9x-3}\) (x khác 1/3)
\(\Leftrightarrow\frac{x^3-3x+5}{3}+\frac{\left(x-2\right)\left(3x-1\right)}{3\left(3x-1\right)}=1\)
\(\Leftrightarrow\frac{x^2-2x+3}{3}=1\)
\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\)
c) \(\frac{1}{\left(3-2x\right)^2}-\frac{4}{\left(3+2x\right)^2}=\frac{3}{9-4x^2}\) (x khác +- 3/2)
\(\Leftrightarrow\frac{\left(3+2x\right)^2}{\left(3+2x\right)^2\left(3-2x\right)^2}-\frac{4\left(3-2x\right)^2}{\left(3+2x\right)^2\left(3-2x\right)^2}=\frac{9}{\left(3+2x\right)^2\left(3-2x\right)^2}\)
\(\Leftrightarrow9+12x+4x^2-4\left(9-12x+4x^2\right)-9=0\)
\(\Leftrightarrow-12x^2+60x-36=0\)
\(\Leftrightarrow-12\left(x^2-5x+3\right)=0\Leftrightarrow x^2-5x+3=0\)
\(\Rightarrow\Delta=b^2-4ac=25-12=13>0\)
\(x_1=\frac{-b+\sqrt{\Delta}}{2ac}=\frac{5+\sqrt{13}}{6}\)
\(x_2=\frac{5-\sqrt{13}}{6}\)
d) \(\frac{1}{x^2+2x+1}=\frac{4}{x+2x^2+x^3}=\frac{5}{2x+2x^2}\)
\(\Leftrightarrow\frac{x^2+2x+1}{1}=\frac{x+2x^2+x^3}{4}=\frac{2x+2x^2}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x^2+2x+1}{1}=\frac{x+2x^2+x^3}{4}=\frac{2x+2x^2}{5}=\frac{x^2+2x+1-\left(x+2x^2+x^3\right)+2x+2x^2}{1-4+5}\)
(dấu bằng thứ nhất của câu d là dấu cộng à???)
điều kiện xác định \(x\ne0\)
ta có : \(\dfrac{x+1}{x^2+2x+4}-\dfrac{x-2}{x^2-2x+4}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x^2-2x+4\right)-\left(x-2\right)\left(x^2+2x+4\right)}{\left(x^2+2x+4\right)\left(x^2-2x+4\right)}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)
\(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-\left(x^3+2x^2+4x-2x^2-4x-8\right)}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-x^3-2x^2-4x+2x^2+4x+8}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{-x^2+2x+12}{x^4+4x^2+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)\(\Leftrightarrow-x^2+2x+12=\dfrac{6}{x}\Leftrightarrow x\left(-x^2+2x+12\right)=6\)
\(\Leftrightarrow-x^3+2x^2+12x=6\Leftrightarrow-x^3+2x^2+12x-6=0\)
tới đây bn bấm máy tính nha
\( x - 3 + \dfrac{{2\left( {x - 3} \right) - 1}}{3} = \dfrac{{3 - x}}{4}\\ \Leftrightarrow x - 3 + \dfrac{{2x - 7}}{3} = \dfrac{{3 - x}}{4}\\ \Leftrightarrow 12x - 36 + 4\left( {2x - 7} \right) = 3\left( {3 - x} \right)\\ \Leftrightarrow 12x - 36 + 8x - 28 = 9 - 3x\\ \Leftrightarrow 20x - 64 = 9 - 3x\\ \Leftrightarrow 23x = 73\\ \Leftrightarrow x = \dfrac{{73}}{{23}} \)
@Vũ Minh Tuấn sai rồi em nhé!
\(x-3+\frac{2.\left(x-3\right)-1}{3}=\frac{3-x}{4}\)
\(\Leftrightarrow\frac{x-3}{1}+\frac{2.\left(x-3\right)-1}{3}=\frac{3-x}{4}\)
\(\Leftrightarrow\frac{12.\left(x-3\right)}{12}+\frac{4.2.\left(x-3\right)-1}{3.4}=\frac{\left(3-x\right).3}{4.3}\)
\(\Leftrightarrow\frac{12.\left(x-3\right)}{12}+\frac{8.\left(x-3\right)-1}{12}=\frac{\left(3-x\right).3}{12}\)
\(\Rightarrow12.\left(x-3\right)+8.\left(x-3\right)-1=\left(3-x\right).3\)
\(\Leftrightarrow12x-36+8x-24-1=9-3x\)
\(\Leftrightarrow20x-61=9-3x\)
\(\Leftrightarrow20x+3x=9+61\)
\(\Leftrightarrow23x=70\)
\(\Leftrightarrow x=70:23\)
\(\Leftrightarrow x=\frac{70}{23}.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{\frac{70}{23}\right\}.\)
Chúc bạn học tốt!
=>1/4x+300=800
=>1/4x=500
hay x=2000
\(\dfrac{1}{4}\left(\dfrac{1}{4}x+300\right)=200\)
\(\Leftrightarrow\dfrac{1}{4}x+300=800\)
\(\Leftrightarrow\dfrac{1}{4}x=500\)
\(\Leftrightarrow x=2000\)