Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{2}{3}+\dfrac{3}{5}=\dfrac{10}{15}+\dfrac{9}{15}=\dfrac{19}{15}\)
a) \(\dfrac{7}{12}-\dfrac{2}{7}+\dfrac{1}{12}=\dfrac{2}{3}-\dfrac{2}{7}=\dfrac{14}{21}-\dfrac{6}{21}=\dfrac{8}{21}\)
\(\dfrac{2}{5}+\dfrac{4}{9}=\dfrac{18}{45}+\dfrac{20}{45}=\dfrac{18+20}{45}=\dfrac{38}{45}\)
TL:
\(\frac{12}{100}\)= 0,12
\(\frac{5}{100}\)= 0,05
\(\frac{306}{1000}\)= 0,306
-HT-
a; A = \(\dfrac{4026\times2014+4030}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2014+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-2013\times2+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-4026+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-2011\right)}{2013\times2016-2011}\)
A = 2
Ta có công thức tổng quát:
\(\dfrac{k}{n\cdot\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\)
\(a,A=\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}\\ =\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\dfrac{x-2}{5\left(x+3\right)}\\ =\dfrac{x-2}{15\left(x+3\right)}\)
Theo đề bài ta có:
\(A=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{15\left(x+3\right)}=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{303}{308}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{305-2}{305+3}\\ \Rightarrow x=305\)
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)
\(\dfrac{1}{3}+\dfrac{2}{3}=\dfrac{3}{3}=1\)
\(\dfrac{4}{5}+\dfrac{5}{6}=\dfrac{24}{30}+\dfrac{25}{30}=\dfrac{49}{30}\)
\(\dfrac{4}{5}-\dfrac{3}{5}=\dfrac{1}{5}\)
\(\dfrac{8}{5}x\dfrac{5}{8}=\dfrac{1}{1}=1\)
\(\dfrac{6}{7}x\dfrac{4}{7}=\dfrac{24}{49}\)
\(\dfrac{4}{5}:\dfrac{4}{5}=\dfrac{4}{5}x\dfrac{5}{4}=\dfrac{1}{1}=1\)
\(\dfrac{5}{5}:\dfrac{5}{5}=\dfrac{5}{5}x\dfrac{5}{5}=\dfrac{1}{1}=1\)
1) \(\dfrac{1}{3}+\dfrac{2}{3}=\dfrac{1+2}{3}=\dfrac{3}{3}=1\)
2) \(\dfrac{4}{5}+\dfrac{5}{6}=\dfrac{24}{30}+\dfrac{25}{30}=\dfrac{24+25}{30}=\dfrac{49}{30}\)
3) \(\dfrac{4}{5}-\dfrac{3}{5}=\dfrac{4-3}{5}=\dfrac{1}{5}\)
4) \(\dfrac{9}{8}-\dfrac{4}{2}=\dfrac{9}{8}-2=\dfrac{9}{8}-\dfrac{16}{8}=-\dfrac{7}{8}\)
5) \(\dfrac{8}{5}\times\dfrac{5}{8}=\dfrac{8\times5}{5\times8}=\dfrac{40}{40}=1\)
6) \(\dfrac{6}{7}\times\dfrac{4}{7}=\dfrac{6\times4}{7}=\dfrac{24}{7}\)
7) \(\dfrac{4}{5}:\dfrac{4}{5}=\dfrac{4}{5}\times\dfrac{5}{4}=\dfrac{4\times5}{5\times4}=\dfrac{20}{20}=1\)
8) \(\dfrac{5}{5}:\dfrac{5}{5}=\dfrac{5}{5}\times\dfrac{5}{5}=\dfrac{5\times5}{5\times5}=\dfrac{25}{25}=1\)