Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{100.101}\)\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}\)\(=\dfrac{1}{2}-\dfrac{1}{101}=\dfrac{99}{202}\)
CM công thức :
\(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{n+a}{n\left(n+a\right)}-\dfrac{n}{n\left(n+a\right)}=\dfrac{a}{n\left(n+a\right)}\)Nhận xét :
\(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{100.101}=\dfrac{1}{100}-\dfrac{1}{101}\)
\(\Rightarrow\)\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(\dfrac{\Rightarrow1}{2}-\dfrac{1}{101}\)
=\(\dfrac{101}{202}-\dfrac{2}{202}=\dfrac{99}{202}\)
~ chúc bn học tốt~
Nhận xét thấy:
\(\dfrac{1}{1.2}\)= 1-\(\dfrac{1}{2}\); \(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\);...
Ta có
A= 1-\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)
A= 1- \(\dfrac{1}{6}\)
A= \(\dfrac{5}{6}\)
Vậy A= \(\dfrac{5}{6}\)
CAU NAY RAT DE NHA BAN
A=\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)
A=1-\(\dfrac{1}{6}\)
=>A=\(\dfrac{5}{6}\)
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{2}-\dfrac{1}{10}\)
\(=\dfrac{2}{5}\)
\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + \(\dfrac{1}{7.8}\)
= \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{8}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{8}\) MSC: 8
= \(\dfrac{4}{8}\) + \(\dfrac{1}{8}\)
= \(\dfrac{5}{8}\)
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
= \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
= \(\dfrac{1}{2}-\dfrac{1}{8}\)
=\(\dfrac{4}{8}-\dfrac{1}{8}\)
=\(\dfrac{3}{8}\)
Ta có:
\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}=\dfrac{9}{10}\)
A= \(\dfrac{1}{1.2}\)+ \(\dfrac{1}{2.3}\)+ \(\dfrac{1}{3.4}\)+ \(\dfrac{1}{4.5}\)+ \(\dfrac{1}{5.6}\)
= 1-\(\dfrac{1}{2}\)+ \(\dfrac{1}{2}\)- \(\dfrac{1}{3}\)+ \(\dfrac{1}{3}\)- \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)- \(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)- \(\dfrac{1}{6}\)
= 1 - \(\dfrac{1}{6}\)= \(\dfrac{5}{6}\)
mk chỉ bt làm câu 1 thôi ak
mong bn thông cảm
a) Để phân số \(\dfrac{3}{n-2}\) là số nguyên thì n - 2 \(⋮\) 3
\(\Rightarrow\) n - 2 \(\in\) Ư(3)
\(\Rightarrow\) n - 2 \(\in\){3; -3; 1;-1}
n \(\in\){5; -1; 3; 2}
c) \(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+......+\dfrac{1}{28.29}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{29}-\dfrac{1}{30}\)
\(=\dfrac{1}{3}-\dfrac{1}{30}\)
\(=\dfrac{10}{30}-\dfrac{1}{30}\)
\(=\dfrac{9}{30}\)
=\(\dfrac{3}{10}\)
1,
B=\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+\(\dfrac{1}{2^4}\)+.........+\(\dfrac{1}{2^{2017}}\)
2B=1+\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+.......+\(\dfrac{1}{2^{2016}}\)
2B-B=(1+\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+.......+\(\dfrac{1}{2^{2016}}\))-(\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+\(\dfrac{1}{2^4}\)+.......+\(\dfrac{1}{2^{2017}}\))
B=1-\(\dfrac{1}{2^{2017}}\)
Vậy B=1-\(\dfrac{1}{2^{2017}}\)
\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{200.201}\)
=\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{200}-\dfrac{1}{201}\)
=\(\dfrac{1}{3}-\dfrac{1}{201}\)
=\(\dfrac{67}{201}-\dfrac{1}{201}\)
=\(\dfrac{66}{201}\)
---Học Tốt Nha---
sai rùi