\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{48.49.50}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2023

\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{48\cdot49\cdot50}\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-...+\dfrac{1}{48\cdot49}-\dfrac{1}{49\cdot50}\right)\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{49\cdot50}\right)\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{2450}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{612}{1225}\)

\(=\dfrac{306}{1225}\)

31 tháng 10 2022

6:

\(4D=2^2+2^4+...+2^{202}\)

=>3D=2^202-1

hay \(D=\dfrac{2^{202}-1}{3}\)

7: \(=\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{32}{99}=\dfrac{16}{99}\)

5 tháng 2 2018

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+.......+\dfrac{1}{37.38.39}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+.....+\dfrac{1}{37.38}-\dfrac{1}{38.39}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{38.39}\)

\(=\dfrac{370}{741}\)

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+......+\dfrac{1}{37.38.39}\)

Ta có:

\(\dfrac{1}{1.2.3}=\dfrac{1}{1.2}-\dfrac{1}{2.3}\); \(\dfrac{1}{2.3.4}=\dfrac{1}{2.3}-\dfrac{1}{3.4}\);.......

\(\Rightarrow A=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...........+\dfrac{1}{37.38}-\dfrac{1}{38.39}\)

\(\Rightarrow A=\dfrac{1}{1.2}-\dfrac{1}{38.39}\)

\(=\dfrac{370}{741}\)

Vậy \(A=\dfrac{370}{741}\)

14 tháng 11 2017

theo mình thì

Ta chứng minh được bài toán tổng quát sau

2/[(n-1)n(n+1)] = 1/[(n-1)n] - 1/[n(n+1)]

Áp dụng:

ta có 2C = 1/(1.2) - 1/ (2.3) +1/(2.3) - 1/(3.4) + ...+ 1/18.19 - 1/19.20

= 1/(1.2) - 1/(19.20) = [190 - 1] / 19.20 = 189/380

=> C = 189/ 760

14 tháng 11 2017

mình nhầm

20 tháng 9 2017

\(S_n=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+....+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(S_n=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(S_n=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n+2\right)+1\left(n+2\right)}\right)\)

\(S_n=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n^2+2n+n+2}\right)\)

\(S_n=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n^2+3n+2}\right)\)

\(S_n=\dfrac{1}{4}-\dfrac{1}{2\left(n^2+3n+2\right)}\)

\(S_n=\dfrac{1}{4}-\dfrac{1}{2n^2+6n+4}\)

\(S_n=\dfrac{2n^2+6n+4}{4\left(2n^2+6n+4\right)}-\dfrac{4}{4\left(2n^2+6n+4\right)}\)

\(S_n=\dfrac{2n^2+6n+4}{8n^2+48n+16}-\dfrac{4}{8n^2+48n+16}\)

\(S_n=\dfrac{2n^2+6n}{8n^2+48n+16}\)

\(S_n=\dfrac{2\left(n^2+3n\right)}{2\left(4n^2+24n+8\right)}=\dfrac{n^2+3n}{4n^2+24n+8}\)

20 tháng 9 2017

\(S_n=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\\ 2S_n=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\\ 2S_n=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\\ =\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\\ =\dfrac{\left(n+1\right)\left(n+2\right)-2}{2\left(n+1\right)\left(n+2\right)}\\ =>S_n=\dfrac{\left(n+1\right)\left(n+2\right)-2}{4\left(n+1\right)\left(n+2\right)}\)

Giải sai r nhéLinh Nguyễn

26 tháng 9 2017

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{18.19.20}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{4}-\dfrac{1}{2.19.20}< \dfrac{1}{4}\)

Cái B TT nhé

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =1-\dfrac{1}{n}< 1\)

D TT

E mk thấy nó ss ớ

26 tháng 9 2017

ai thế

9 tháng 8 2017

\(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\)

\(A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

\(A=1-\dfrac{1}{99}\)

\(A=\dfrac{98}{99}\)

\(B=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{8.9.10}\)

\(B=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\)

\(B=\dfrac{1}{1.2}-\dfrac{1}{9.10}\)

\(B=\dfrac{1}{2}-\dfrac{1}{90}\)

\(B=\dfrac{22}{45}\)

9 tháng 8 2017

\(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+.........+\dfrac{2}{97.99}\)

\(\Leftrightarrow A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+........+\dfrac{1}{97}-\dfrac{1}{99}\)

\(\Leftrightarrow A=1-\dfrac{1}{99}=\dfrac{98}{99}\)

\(B=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+.......+\dfrac{2}{8.9.10}\)

\(\Leftrightarrow B=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+......+\dfrac{1}{8.9}-\dfrac{1}{9.10}\)

\(\Leftrightarrow B=\dfrac{1}{1.2}-\dfrac{1}{9.10}\)

\(\Leftrightarrow B=\dfrac{1}{2}-\dfrac{1}{90}\)

\(\Leftrightarrow B=\dfrac{22}{45}\)

15 tháng 10 2015

Nhân 2 vế với 2 ta có:

Ax2=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{48.49.50}=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\left(\frac{1}{48.49}-\frac{1}{49.50}\right)\)

1 tháng 3 2018

\(S=\dfrac{1}{1.2}+\dfrac{2}{1.2.3}+........+\dfrac{99}{1.2.......100}\)

\(=\dfrac{1}{2!}+\dfrac{2}{3!}+....+\dfrac{99}{100!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+.......+\dfrac{100-1}{100!}\)

\(=\dfrac{1}{1}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+....+\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=1-\dfrac{1}{100!}< 1\)

\(\Leftrightarrow S< 1\left(đpcm\right)\)