\(\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+...+59}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2023

A = \(\dfrac{1}{1+2+3}\) + \(\dfrac{1}{1+2+3+4}\) +......+\(\dfrac{1}{1+2+3+4+....+59}\)

A = \(\dfrac{1}{(3+1).3:2}\) + \(\dfrac{1}{(4+1).4:2}\)+......+\(\dfrac{1}{(59+1).59:2}\)

A = \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) +.....+ \(\dfrac{2}{59.60}\)

A = 2.(\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{59.60}\))

A = 2. ( \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) +....+ \(\dfrac{1}{59}\) - \(\dfrac{1}{60}\))

A = 2. ( \(\dfrac{1}{3}\) - \(\dfrac{1}{60}\))

A = 2. \(\dfrac{19}{60}\)

A = \(\dfrac{19}{30}\)

30 tháng 9 2017

a/ Đặt :

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+.........+\dfrac{1}{3^{50}}\)

\(\Leftrightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+.......+\dfrac{1}{3^{49}}\)

\(\Leftrightarrow3A-A=\left(1+\dfrac{1}{3}+....+\dfrac{1}{3^{49}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+....+\dfrac{1}{3^{50}}\right)\)

\(\Leftrightarrow2A=1-\dfrac{1}{3^{50}}\)

còn sao nx thì mk chịu =.=

18 tháng 6 2018

Giải:

a) \(\dfrac{1}{3}x+\dfrac{1}{5}-\dfrac{1}{2}x=1\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{6}x=\dfrac{5}{4}\)

\(\Leftrightarrow\dfrac{1}{6}x=\dfrac{-21}{20}\)

\(\Leftrightarrow x=\dfrac{-63}{10}\)

Vậy ...

b) \(\dfrac{3}{2}\left(x+\dfrac{1}{2}\right)-\dfrac{1}{8}x=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{3}{2}x+\dfrac{3}{4}-\dfrac{1}{8}x=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{11}{8}x=\dfrac{-1}{2}\)

\(\Leftrightarrow x=\dfrac{-4}{11}\)

Vậy ...

Các câu sau làm tương tự câu b)

6 tháng 10 2018

a, Ta có :\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\\ \Rightarrow2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\\ \Rightarrow2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{50}}\right)\\ \Rightarrow A=1-\dfrac{1}{2^{50}}< 1\\ \Rightarrow A< 1\) Vậy \(A< 1\)

b, Ta có :

\(B=\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}\)Vậy \(B< \dfrac{1}{2}\)

c, Ta có :

\(C=\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\\ \Rightarrow4C=1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\\\Rightarrow4C-C=\left(1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\right)-\left(\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\right)\\ \Rightarrow3C=1-\dfrac{1}{4^{1000}}< 1\\ \Rightarrow C< \dfrac{1}{3}\)Vậy \(C< \dfrac{1}{3}\)

6 tháng 10 2018

Mình làm rồi đó !!!!!Trần Thị Hương Lan

5 tháng 10 2017

\(a)3\dfrac{1}{2}.\dfrac{4}{49}-\left[2,\left(4\right):2\dfrac{5}{11}\right]:\left(\dfrac{-42}{5}\right)\)

\(=\dfrac{7}{2}.\dfrac{4}{49}-\dfrac{88}{27}:\left(\dfrac{-42}{7}\right)\)

\(=\dfrac{2}{7}-\dfrac{-220}{567}\)

\(=\dfrac{382}{567}\)

các phần con lại dễ nên bn tự lm đi nhé mk bn lắm

Chúc bạn học tốt!

7 tháng 10 2017

a) \(\dfrac{-5}{9}.\dfrac{3}{11}+\dfrac{-13}{18}.\dfrac{3}{11}\)

\(=\dfrac{3}{11}.\left(\dfrac{-5}{9}+\dfrac{-13}{9}\right)\)

\(=\dfrac{3}{11}.\left(-2\right)\)

\(=\dfrac{-6}{11}\)

b) \(\dfrac{11}{2}.2\dfrac{1}{3}-1\dfrac{1}{5}.1\dfrac{1}{2}\)

\(=\dfrac{11}{3}.\dfrac{7}{3}-\dfrac{6}{5}.\dfrac{3}{2}\)

\(=\dfrac{77}{9}-\dfrac{9}{5}\)

\(=\dfrac{385}{45}-\dfrac{81}{45}\)

\(=\dfrac{304}{45}\)

c) \(1\dfrac{1}{9}.\dfrac{2}{145}-4\dfrac{1}{3}-\dfrac{2}{145}+\dfrac{2}{145}\)

\(=\dfrac{10}{9}.\dfrac{2}{145}-\dfrac{8}{3}\)

\(=\dfrac{4}{261}-\dfrac{8}{3}\)

\(=\dfrac{4}{261}-\dfrac{696}{261}\)

\(=-\dfrac{692}{261}\)

d) \(1-\dfrac{1}{2}+2-\dfrac{2}{3}+3-\dfrac{3}{4}+4-\dfrac{1}{4}-3-\dfrac{1}{3}-2-\dfrac{1}{2}-1\)

\(=\left(1-1\right)+\left(2-2\right)+\left(3-3\right)+4-\left(\dfrac{1}{2}+\dfrac{1}{2}\right)-\left(\dfrac{2}{3}+\dfrac{1}{3}\right)-\left(\dfrac{3}{4}+\dfrac{1}{4}\right)\)

\(=0+0+0+4-1-1-1\)

\(=4-3\)

\(=1\)

15 tháng 10 2018

\(\left(\dfrac{1}{5}+\dfrac{5}{6}-\dfrac{9}{10}\right).\dfrac{3}{5}-0,75:1\dfrac{1}{2}-1,25^2\)

\(=\left(\dfrac{1}{5}+\dfrac{5}{6}-\dfrac{9}{10}\right).\dfrac{3}{5}-\dfrac{3}{4}:\dfrac{3}{2}-\dfrac{25}{16}\) \(=\left(\dfrac{31}{30}-\dfrac{9}{10}\right).\left(-\dfrac{3}{20}\right):\left(-\dfrac{1}{16}\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ =\dfrac{2}{15}.\left(-\dfrac{3}{20}\right):\left(-\dfrac{1}{16}\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ =\left(-\dfrac{1}{50}\right):\left(-\dfrac{1}{16}\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ =\dfrac{8}{25}\)

15 tháng 10 2018

đề bài là gì

Bài 1:

a: \(=\dfrac{1}{2}-\dfrac{7}{13}-\dfrac{1}{3}-\dfrac{6}{13}+\dfrac{1}{3}+\dfrac{4}{3}=\dfrac{4}{3}-1+\dfrac{1}{2}=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\)

b: \(=\dfrac{3}{4}+\dfrac{2}{5}+\dfrac{1}{9}-1-\dfrac{2}{5}+\dfrac{5}{4}=2-1+\dfrac{1}{9}=\dfrac{10}{9}\)

c: \(=\left(\dfrac{-3}{2}\cdot\dfrac{4}{3}\right)\cdot\dfrac{-9}{2}-\dfrac{1}{2}=9-\dfrac{1}{2}=8.5\)

26 tháng 7 2017

a, \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{99}{100!}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)

\(\Rightarrowđpcm\)

d, \(D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3D=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)

\(\Rightarrow3D-D=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)

\(\Rightarrow2D=1-\dfrac{1}{3^{99}}\)

\(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}< \dfrac{1}{2}\)

\(\Rightarrowđpcm\)

26 tháng 7 2017

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(\Rightarrowđpcm\)

22 tháng 10 2017

a, \(\dfrac{1}{2}+\dfrac{2}{3}x=\dfrac{4}{5}\)

\(\Rightarrow\dfrac{2}{3}x=\dfrac{4}{5}-\dfrac{1}{2}\\ \Rightarrow\dfrac{2}{3}x=\dfrac{3}{10}\\ \Rightarrow x=\dfrac{3}{10}\cdot\dfrac{3}{2}\\ \Rightarrow x=\dfrac{9}{20}\)

b, \(x+\dfrac{1}{4}=\dfrac{4}{3}\)

\(\Rightarrow x=\dfrac{4}{3}-\dfrac{1}{4}\\ \Rightarrow x=\dfrac{13}{12}\)

c, \(\dfrac{3}{5}x-\dfrac{1}{2}=-\dfrac{1}{7}\)

\(\Rightarrow\dfrac{3}{5}x=-\dfrac{1}{7}-\dfrac{1}{2}\\ \Rightarrow\dfrac{3}{5}x=-\dfrac{9}{14}\\ \Rightarrow x=-\dfrac{9}{14}\cdot\dfrac{5}{3}\\ \Rightarrow x=\dfrac{15}{14}\)

d, \(\left|x-\dfrac{4}{5}\right|=\dfrac{3}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{4}{5}=\dfrac{3}{4}\\x-\dfrac{4}{5}=-\dfrac{3}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}+\dfrac{4}{5}\\x=-\dfrac{3}{4}+\dfrac{4}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{31}{20}\\x=\dfrac{1}{20}\end{matrix}\right.\)

e, \(lxl\) là j mk ko hiểu!

22 tháng 10 2017

a)2/3x=4/5-1/2

2/3x=3/10

x=3/10:2/3= 3/10.3/2=9/20